Роль астроцитов в нейровоспалении (обзор)
Рубрика: Патологическая физиология Тип статьи: Обзор
Авторы: Мордовина А.И., Руденко Е.Е., Демура Т.А.
Организация: ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» Минздрава России , Институт клинической морфологии и цифровой патологии ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
Аннотация. Цель: представить результаты исследований роли астроцитов в нейровоспалении, а также взаимодействий астроглиоцитов с другими глиальными клетками и нейронами в контексте нейровоспаления. Найдены 63 научные работы с использованием для поиска баз данных Cochrane Library, PubMed по запросам: «астроциты и нейровоспаление», «реактивные астроциты», «нейроглия и нейровоспаление». Для обзора отобрано 45 источников. Временной интервал анализируемой литературы: 2000-2020 гг. Сделан вывод о двойственности роли астроцитов в нейровоспалении. Эти клетки оказывают как защитный, так и разрушительный эффект. Важно понимать, что деятельность реактивных астроцитов зависит от их топографического расположения и микроокружения, а также медиаторов, которые выделяются клетками резидентами и нерезидентами центральной нервной системы (ЦНС). Знания о регуляции астроцитарных эффектов необходимы для реализации терапевтического потенциала астроглиоцитов.
Литература:
1. Khakh BS, Deneen В. The emerging nature of astro-cyte diversity. Annu Rev Neurosci. 2019; (42): 187-207. DOI: 10.1146/annurev-neuro-070918-050443.
2. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000; (25): 1439-51. DOI: 10.1023/A:1007677003387.
3. Malatesta P, Hack MA, Hartfuss E, et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron. 2003; 37 (5): 751-64. DOI: 10.1016/s0896-6273(03)00116-8.
4. Block ML, Zecca L, Hong JS. Microglia-mediated neuro-toxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007; 8 (1): 57-69. DOI: 10.1038/nrn2038.
5. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013; 39 (1): 3-18. DOI: 10.1111/nan. 12011.
6. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; (6): 13. DOI: 10.12703/P6-13.
7. Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017; 46 (6): 957-67. DOI: 10.1016/j.immuni.2017.06.006.
8. Colombo E, Farina О Astrocytes: Key regulators of neu-roinflammation. Trends Immunol. 2016; 37 (9): 608-20. DOI: 10.1016/j.it.2016.06.006.
9. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. 2020; 108 (4): 608-22. DOI: 10.1016/j.neuron.2020.08.012.
10. Brambilla R, Morton PD, Ashbaugh JJ, et al. Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia. 2014; 62 (3): 452-67. DOI: 10.1002/glia.22616.
11. Ponath G, Ramanan S, Mubarak M, et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain. 2017; 140 (2): 399-413. DOI: 10.1093/brain/aww298.
12. Rothhammer V, Kenison JE, Tjon E, et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci USA. 2017; 114 (8): 2012-7. DOI: 10.1073/pnas. 1615413114.
13. Rivera J, Proia RL, Olivera A. The alliance of sphingo-sine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008; 8 (10): 753-63. DOI: 10.1038/nri2400.
14. Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingoli-mod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA. 2011; 108 (2): 751-6. DOI: 10.1073/pnas.1014154108.
15. Mayo L, Trauger SA, Blain M, et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med. 2014; 20 (10): 1147-56. DOI: 10.1038/nm.3681.
16. Chatterjee S, Kolmakova A, Rajesh M. Regulation of lactosylceramide synthase (glucosylceramide beta-1,4-galacto-syltransferase); implication as a drug target. Curr Drug Targets. 2008; 9 (4): 272-81. DOI: 10.2174/138945008783954952.
17. Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48 (1): 19-33. DOI: 10.1016/j.immuni.2017.12.012.
18. Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019; 19 (3): 184-97. DOI: 10.1038/S41577-019-0125-8.
19. Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016; 22 (6): 586-97. DOI: 10.1038/nm.4106.
20. Zelante T, lannitti RG, Cunha C, et al. Tryptophan ca-tabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013; 39 (2): 372-85. DOI: 10.1016/j.immuni.2013.08.003.
21. Arevalo JC, Wu SH. Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci. 2006; 63 (13): 1523-37. DOI: 10.1007/S00018-006-6010-1.
22. Colombo E, Cordiglieri C, Melli G, et al. Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide
production and neurodegeneration. J Exp Med. 2012; 209 (3): 521-35. DOI: 10.1084/jem.20110698.
23. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotox-ic reactive astrocytes are induced by activated microglia. Nature. 2017; 541 (7638): 481-7. DOI: 10.1038/nature21029.
24. Wheeler MA, Clark 1С, Tjon EC, et al. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020; 578 (7796): 593-9. DOI: 10.1038/s41586-020-1999-0.
25. Komuczki J, Tuzlak S, Friebel E, et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1 p. Immunity. 2019; 50 (5): 1289-304. e6. DOI: 10.1016/j.immuni. 2019.04.006.
26. Heink S, Yogev N, Garbers C, et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat Immunol. 2017; 18 (1): 74-85. DOI: 10.1038/ni. 3632.
27. Sanchis P, Fernandez-Gayol O, Comes G, et al. Inter-leukin-6 derived from the central nervous system may influence the pathogenesis of experimental autoimmune encephalomyelitis in a cell-dependent manner. Cells. 2020; 9 (2): 330. DOI: 10.3390/cells9020330.
28. Savarin C, Hinton DR, Valentin-Torres A, et al. Astrocyte response to IFN-y limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. J Neuroinflamma-tion. 2015; (12): 79. DOI: 10.1186/s12974-015-0293-9.
29. Wheeler MA, Jaronen M, Covacu R, et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell. 2019; 176 (3): 581-96. e18. DOI: 10.1016/j.cell. 2018.12.012.
30. Norden DM, Fenn AM, Dugan A, Godbout JP TGFp produced by IL-10 redirected astrocytes attenuates microglial activation. Glia. 2014; 62 (6): 881-95. DOI: 10.1002/glia.22647.
31. ZeisT, Enz L, Schaeren-Wemers N. The immunomodulatory oligodendrocyte. Brain Res. 2016; 1641 (Pt A): 139-48. DOI: 10.1016/j.brainres.2015.09.021.
32. Jakel S, Agirre E, Mendanha Falcao A, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019; 566 (7745): 543-7. DOI: 10.1038/s41586-019-0903-2.
33. Moyon S, Dubessy AL, Aigrot MS, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015; 35 (1): 4-20. DOI: 10.1523/JNEUROSCI.0849-14.2015.
34. Valentin-Torres A, Savarin C, Barnett J, Bergmann CO Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation. J Neuroinflammation. 2018; 15 (1): 121. DOI: 10.1186/sl 2974-018-1164-y.
35. Locatelli G, Wortge S, Buch T, et al. Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci. 2012; 15 (4): 543-50. DOI: 10.1038/nn.3062.
36. Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol. 2016; (4): 71. DOI: 10.3389/fcell.2016.00071.
37. Niu J, Tsai HH, Hoi KK, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci. 2019; 22 (5): 709-18. DOI: 10.1038/S41593-019-0369-4.
38. Locatelli G, Theodorou D, Kendirli A, et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat Neurosci. 2018; 21 (9): 1196-208. DOI: 10.1038/S41593-018-0212-3.
39. Calabrese V, Mancuso C, Calvani M, et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity Nat Rev Neurosci. 2007; 8 (10): 766-75. DOI: 10.1038/nrn2214.
40. Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001; 4 (7): 702-10. DOI: 10.1038/89490.
41. Chao CC, Gutierrez-Vazquez C, Rothhammer V, et al. Metabolic control of astrocyte pathogenic activity via CPLA2-MA-VS. Cell. 2019; 179 (7): 1483-98. e22. DOI: 10.1016/j.cell. 2019.11.016.
42. Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018; 19 (4): 235-49. DOI: 10.1038/nrn.2018.19.
43. Merlini M, Meyer ЕР, Ulmann-Schuler A, Nitsch RM. Vascular p-amyloid and early astrocyte alterations impair cere-brovascular function and cerebral metabolism in transgenic arcAp mice. Acta Neuropathol. 2011; 122 (3): 293-311. DOI: 10.1007/S00401 -011 -0834-y.
44. Ohman A, Forsgren L. NMR metabonomics of cere-brospinal fluid distinguishes between Parkinson's disease and
controls. Neurosci Lett. 2015; (594): 36-9. DOI: 10.1016/j.neulet. 2015.03.051.
45. Nagai J, Rajbhandari AK, Gangwani MR, etal. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell. 2019; 177 (5): 1280-92. e20. DOI: 10.1016/j. cell.2019.03.019.
Прикрепленный файл | Размер |
---|---|
2023_01_89-95.pdf | 1.32 Мб |