

Миокардит при инфекции COVID-19: патогенетические механизмы, сложности диагностики (обзор)
Рубрика: Тематическое приложение Тип статьи: Обзор
Авторы: Сергеева В.А., Липатова Т.Е.
Организация: ФГБОУ ВО Саратовский ГМУ им. В.И. Разумовского Минздрава России
В обзоре обобщена актуальная информация по воспалительному миокардиальному повреждению при инфекции COVID-19. В качестве литературных источников использованы наиболее актуальные работы 2020-2021 гг., а также более ранние источники, содержащие фундаментальные сведения соответствующей тематики; наиболее значимая информация по обсуждаемой проблеме приведена в статье (всего 50 работ). Использованы запросы: «миокардит», «миокардиальное повреждение», «COVID-19» — в поисковых системах PubMed/MedLine, eLibrary. Анализ актуальной международной литературы продемонстрировал убедительные доказательства возможного развития миокардита в рамках новой коронавирусной инфекции. Значительные сложности представляет гистологическая верификация миокардиального повреждения, ассоциированного с COVID-19, так как в условиях тяжелого течения инфекции выполнение эндомиокардиальной биопсии не всегда возможно. В связи с этим статистические данные не отражают полной информации о распространенности миокардитов, ассоциированных с COVID-19. Не окончательно прояснены все механизмы патогенеза воспалительного повреждения миокарда. Для улучшения прогноза пациентов с миокардитом при инфекции COVID-19 требуется дальнейшее изучение проблемы и выработка унифицированных подходов к диагностике и лечению.
Литература:
1. Dominguez F, Kuhl U, Pieske B, et al. Update on myocarditis and inflammatory cardiomyopathy: reemergence of endomyocardial biopsy. Rev Esp Cardiol 2016; 69: 178-87.
2. Trachtenberg BH, Hare JM. Inflammatory cardiomyopathic syndromes. Circ Res 2017; 121: 803-18.
3. Caforio AL, Pankuweit S, Arbustini, et al. Current state of knowledge on etiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013; 34: 2636-48. URL: http://dx.doi.org /10.1093/eurheartj/eht210
4. Official website of the Russian Society of Cardiology. URL: http://www.scardio.ru/content/Guidelines/2020/Clinic_ rekom_Miokardit. pdf
5. Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and longterm implications. Eur Heart J 2020; 0: 1-3. URL: https:// doi.org/10.1093/eurheartj/ehaa231
6. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116: 1097-100.
7. Jafarzadeh A, Chauhan P, Saha B, et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 2020; 257: 118-102. URL: https://doi.Org/10.1016/j. Ifs. 2020.118102
8. Сергиенко И. В., Резинкина П. К. Новая коронавирусная инфекция COVID-19 и сердечно-сосудистые заболевания: особенности терапии. Атеросклероз и дислипидемии 2021; 2 (43): 5-23). DOI: 10.34687/2219-8202. JAD. 2021.02.0001.
9. Sardu С, Gambardella J, Morelli MB, et al. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med 2020; 9 (5): 1417. DOI: 10.3390/jcm9051417.
10. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76: 14-20. DOI: 10.1016/j. ejim. 2020.04.037.
11. Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, arrhythmic risk and inflammation: mind the gap. Circulation 2020; 142(1): 7-9. DOI: 10.1161/CIRCULATIONAHA. 120.047293.
12. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology 2020; 17 (5): 259-60.
13. Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83. DOI: 10.1016/j. jcrc. 2020.03.005.
14. Chinello P, Petrosillo N, Pittalis S, et al. QTc interval prolongation during favipiravir therapy in an Ebolavirus-infected patient. PLoS Negl Trop Dis 2017; 11 (12): e0006034. DOI: 10.1371/journal. pntd. 0006034.
15. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination and pathogenesis of coronaviruses. Trends Microbiol 2016; 24: 490-502.
16. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med 2016;36:78-80.
17. Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020; 22 (5): 911-5. DOI: 10.1002/ejhf. 1828.
18. Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19 associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J 2020; 41: 3827-35.
19. Dolhnikoff M, Ferreira Ferranti J, de Almeida Monteiro RA, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome [published correction appears in Lancet Child Adolesc Health 2020 Oct; 4 (10): e39]. Lancet Child Adolesc Health 2020; 4 (10): 790-94. DOI: 10.1016/S2352-4642 (20) 30257-1.
20. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. Intensive Care Med 2020; 46: 846-48.
21. Коган E.A., Березовский Ю.С., Благова О. В. и др. Миокардиту пациентов с COVID-19, подтвержденный результатами иммуногистохимического исследования. Кардиология 2020; 60 (7): 4-10.
22. Escher F, Pietsch Н, Aleshcheva G, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail 2020; 7 (5): 2440-7. DOI: 10.1002/ehf2.12805.
23. Lindner D, Fitzek A, Brauninger H, et al. Association of Cardiac Infection with SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol 2020; 5 (11): 1281-5. DOI: 10.1001/jamacardio. 2020.3551.
24. Craver R, Huber S, Sandomirsky M, et al. Fatal Eosinophilic Myocarditis in a Healthy 17-Year-Old Male with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2c). Fetal and Pediatric Pathology 2020; 39 (3): 263-8. [Epubahead of print]. DOI: 10.1080/15513815.2020.1761491.
25. Huang C, Wang Y, Li X, et. al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395 (10223): 497-506. DOI: http://doi.Org/10.1016/s0140-6736(20)30183-5.
26. Fu Y, Cheng Y, Wu Y Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin 2020; 35 (3): 266-71.
27. Liu B, Li M, Zhou Z, et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19) — induced cytokine release syndrome (CRS). J Autoimmun 2020; 111: 102452. URL: https://doi.Org/10.1016/j.jaut. 2020.102452.
28. Tajbakhsh A, Hayat SMG, et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Review of Anti-infective Therapy 2021; 19 (3): 345-57. DOI: 10.1080/14787210 .2020.1822737.
29. Wenzhong L, Hualan L. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. Available at: URL: https:// chemrxiv.org. Accessed 2021 Oct 14.
30. Ramos SG, Rattis B, Ottaviani G, et al. ACE2 Down-Regulation May Act as a Transient Molecular Disease Causing RAAS Dysregulation and Tissue Damage in the Microcirculatory Environment Among COVID-19 Patients. Am J Pathol2021; 191: 1154-64. DOI: 10.1016/j. ajpath. 2021.04.010.
31. Driggin E, Madhavan MV, Bikdeli В et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75 (18): 2352-71. DOI: 10.1016/j. jacc. 2020.03.031.
32. Hendren NS, Drazner MH, Bozkurt B, et al. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation 2020; 141 (23): 1903-14. DOI: 10.1161/CIRCULATIONAHA. 120.047349.
33. Kawakami R, Sakamoto A, Kawai K, et al. Pathological evidence for SARS-CoV-2 as a cause of myocarditis: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 77 (3): 314-25.
34. Long B, Brady WJ, Koyfman A, et al. Cardiovascular complications in COVID-19. Am J Emerg Med 2020 Jul; 38 (7): 1504-7. DOI: 10.1016/j. ajem. 2020.04.048.
35. Sawalha K, Abozenah M, Kadado AJ, et al. Systematic Review of COVID-19 Related Myocarditis: Insights on Management and Outcome. Cardiovasc Revasc Med 2021 Feb; 23: 107-13. DOI: 10.1016/j. carrev. 2020.08.028.
36. Doyen D, Moceri P, DucreuxD, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet 2020; 395 (10235): 1516. DOI: 10.1016/S0140-6736 (20) 30912-0.
37. D'Andrea A, Di Giannuario G, Marrazzo G, et al. The role of multimodality imaging in COVID-19 patients: from diagnosis to clinical monitoring and prognosis. G Ital Cardiol 2021; 21: 345-53.
38. EspositoA, PalmisanoA, Natale Letal. Cardiac magnetic resonance characterization of myocarditis-like acute cardiac syndrome in COVID-19. JACC Cardiovasc Imaging 2020; 13: 2462-5.
39. Wang D, Ни В, Ни C, et. al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus Infected Pneumonia in Wuhan, China. JAMA 2020; 323 (11): 1061. DOI: http://doi.org/10.1001/jama.2020.1585.
40. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8 (5): 475-81.
41. GuoT, FanY, Chen M, etal. Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19). JAMA Cardiol 2020; 5 (7): 811-8.
42. Deng P, Ke Z, Ying B, et al. The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19. Clin Chim Acta 2020; 510: 186-90.
43. Zinellu A, Sotgia S, Fois AG, et al. Serum CK-MB, COVID-19 severity and mortality: An updated systematic review and meta-analysis with meta-regression. Advances in Medical Sciences 2021; 66 (2): 304-14. DOI: https://doi.Org/10.1016/j. advms. 2021.07.001.
44. Official website of the Russian Society of Cardiology. URL: https://www.scardio.ru/content/Guidelines/2020/Clinic_ rekom_HSN. pdf
45. Caro-Codon J, Rey JR, Buno A et al. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur J Heart Fail 2021; 23: 456-64. URL: https://doi.org/10.1002/ejhf. 2095
46. Practice of echocardiography during the COVID-19 pandemic: guidance from the Canadian Society of Echocardiography. [Internet] 2020: 1-4. URL: http://csecho.ca/wp-content/uploads/2020/03/CSE-COVID-19-Guidance_English-1. pdf. Accessed Oct 8, 2021.
47. Pirzada A, Mokhtar AT, Moeller AD. COVID-19 and Myocarditis: What Do We Know So Far? CJC Open 2020 May 28; 2 (4): 278-85. DOI: 10.1016/j. cjco. 2020.05.005.
48. Коноплева Ю.Ю., Петрова E.B. Поражение сердца при COVID-19 (клинические наблюдения). Радиология — практика 2020; 6 (84): 61-7.
49. Goha A, Mezue К, Edwards Р, et al. COVID-19 and the heart: An update for clinicians. Clin Cardiol 2020; 43 (11): 1216-22. DOI: 10.1002/clc. 23406.
Прикрепленный файл | Размер |
---|---|
2021_03-1_571-577.pdf | 418.97 кб |