

Impairment of the melatonergic system in the pathophysiology of diabetic encephalopathy (review)
Heading: Рathophysiology Article type: Review
Authors: Bykov Yu.V.
Organization: Stavropol State Medical University
Objective: to analyze the scientific literature to identify the main pathophysiological mechanisms of melatonergic system disorders in the formation of diabetic encephalopathy and to highlight the possible therapeutic efficacy of melatonin (MLT). Review writing methodology. A total of 50 scientific papers were found using the Cochrane Library, PubMed, el_ibrary.ru, Medscape, and analyzed. Database search had been performed for papers published from2011 to 2023 using the keyword combination 'diabetesmellitus", "melatonergic system", "melatonin" and "diabetic encephalopathy". Conclusion. The pathophysiology of diabetic encephalopathy is not yet fully understood, and search is ongoing for novel mechanisms underlying its development, with melatonergic system dysfunction seen as a promising hypothetical mechanism. Oxidative stress, mitochondrial dysfunction, inflammation, disruption of the insulin signal transduction pathway and increased brain cell apoptosis may impair the production of MLT and trigger the melatonergic system dysfunction process. MLT is known for its marked neurotrophic effects, and its insufficiency may exacerbate cognitive impairment in diabetes mellitus.
Bibliography:
1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37 (Suppl. 1): S81-S90. DOI:10.2337/dc14-S081
2. Xiong L, Liu S, Liu C, et al. The protective effects of melatonin in high glucose environment by alleviating autophagy and apoptosis on primary cortical neurons. Mol Cell Biochem. 2023; 478 (7): 1415-25. DOI:10.1007/s11010-022-04596-w
3. Bykov YuV. Type I diabetes mellitus in pediatric practice and damage of the central nervous system. Tavricheskij Mediko-Biologicheskij Vestnik. 2020; 4 (23): 91-8.
4. Pourhanifeh МН, Hosseinzadeh A, Dehdashtian Е et al. Melatonin: New insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12: 30. DOI:10.1186 /s13098-020-00537-z
5. Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014; 103 (2): 137-49. DOI:10.1016/j. diabres. 2013.11.002
6. Sadeghi A, Hami J, Razavi S, et al. The effect of diabetes mellitus on apoptosis in hippocampus: Cellular and molecular aspects. Int J Prev Med. 2016; 7: 57. DOI:10.4103/2008-7802.178531
7. Bykov YuV. Oxidative stress and diabetic encephalopa-thy: pathophysiological mechanisms. Sovremennye problemy nauki i obrazovaniya. 2022; 6-2: 39. DOI:10.17513/spno. 32314
8. Bykov YuV, Baturin VA. Diabetic encephalopathy in diabetes mellitus in childhood: pathophysiology and clinical manifestations (review). Saratov Journal of Medical Scientific Research. 2022; 18 (1): 46-9.
9. Ramos-Rodriguez JJ, Molina-Gil S, Ortiz-Barajas О, et al. Central proliferation and neurogenesis is impaired in type 2 diabetes and prediabetes animal models. PLoS One. 2014; 9 (2): e89229. DOI:10.1371/journal. pone. 0089229
10. Vieira LL, de Lima Soares RG, Da Silva Felipe SM, et al. Physiological targets for the treatment of diabetic encephalopathy. Cent Nerv Syst Agents Med Chem. 2017; 17 (1): 78-86. PMID: 27121380
11. Amin SN, Sharawy N, El Tablawy N, et al. Melatonin-Pretreated Mesenchymal Stem Cells Improved Cognition in a Diabetic Murine Model. Front Physiol. 2021; 12: 628107. DOI:10.3389/fphys.2021.628107
12. Kor Y, Geyikli I, Keskin M, Akan M. Preliminary study: Evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus. Indian J Endocrinol Metab. 2014; 18 (4): 565-8. DOI:10.4103/2230-8210.137521
13. Shen QH, Li HF, Zhou XY, et al. Relation of serum melatonin levels to postoperative delirium in older patients undergoing major abdominal surgery. J Int Med Res. 2020; 48 (3): 300060520910642. DOI:10.1177/0300060520910642
14. Karamitri A, Jockers R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. 2019; 15 (2): 105-25. DOM 0.1038/S41574-018-0130-1
15. De Berardis D, Marini S, Fornaro M, et al. The melatonergic system in mood and anxiety disorders and the role of agomelatine: implications for clinical practice. Int J Mol Sci. 2013; 14(6): 12458-83. DOI:10.3390/ijms140612458
16. Michurina SV, Vasendin DV, Ishchenko DYu. Physiological and biological effect of melatonin: some results and prospects of studying. Russian Journal of Physiology. 2018; 104 (3): 257-71.
17. Yu X, Li Z, Zheng H, et al. Protective roles of melatonin in central nervous system diseases by regulation of neural stem cells. Cell Prolif. 2017; 50: e12323. DOI:10.1111/cpr.12323
18. Wu J, Tan Z, Li H, et al. Melatonin reduces proliferation and promotes apoptosis of bladder cancer cells by suppressing O-GlcNAcylation of cyclin-dependent-like kinase 5. J Pineal Res. 2021; 71 (3):e12765. DOI:10.1111/jpi.12765
19. Gurunathan S, Kang MH, Kim JH. Role and therapeutic potential of melatonin in the central nervous system and cancers. Cancers (Basel). 2020; 12 (6): 1567. DOI: 10.3390/cancers12061567
20. Arjunan A, Sah DK, Jung YD, Song J. Hepatic encepha-lopathy and melatonin. Antioxidants (Basel). 2022; 11 (5): 837. DOI: 10.3390/antiox11050837
21. Hsu MH, Chen YC, Sheen JM, et al. Melatonin prevented spatial deficits and increases in brain asymmetric dimethylargi-nine in young bile duct ligation rats. Neuroreport. 2018; 29: 541-6. DOI:10.1097/WNR. 0000000000000972
22. Cui Y, Yang M, Wang Y, et al. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J. 2021; 35 (4): e21485. DOM0.1096/fj. 202002247 RR
23. Tchekalarova J, Nenchovska Z, Kortenska L, et al. Impact of melatonin deficit on emotional status and oxidative stress-induced changes in sphingomyelin and cholesterol level in young adult, mature, and aged rats. Int J Mol Sci. 2022; 23 (5): 2809. DOI:10.3390/ijms23052809
24. Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol Res. 2020; 161: 105210. DOI:10.1016/j.phrs.2020.105210
25. Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Mostavafi S, et al. Melatonin: An important anticancer agent in colorectal cancer. J Cell Physiol. 2020; 235 (2): 804-17. DOI:10.1002/jcp.29049
26. Maiocchi SL, Morris JC, Rees MD, Thomas SR. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochem Pharmacol. 2017; (135): 90-115. DOI:10.1016/j.bcp.2017.03.016
27. Jangra A, Datusalia AK, Khandwe S, Sharma SS. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress — PARP pathway. Pharmacol Biochem Behav. 2013; (114-115): 43-51. DOI:10.1016/j. pbb. 2013.10.021
28. Hajam YA, Rai S, Roy A, et al. Repossession of brain complications in a streptozotocin induced diabetic rat by exogenous melatonin administration. Int J Zool Res. 2017; 13 (2): 64-73. DOI:10.3923/ijzr. 2017.64.73
29. Sharma C, Kim S, Nam Y, et al. Mitochondrial dysfunction asa driver of cognitive impairment in Alzheimer's disease. Int J Mol Sci. 2021; 22 (9): 4850. DOI:10.3390/ijms22094850
30. Reiter RJ, Ma Q, Sharma R, et al. Melatonin in mitochondria: Mitigating clear and present dangers. Physiology (Bethes-da). 2020; 35 (2): 86-95. DOI:10.1152/physiol. 00034.2019
31. Chen WR, Liu HB, Chen YD, et al. Melatonin attenuates myocardial ischemia/reperfusion injury by inhibiting autophagy via an AMPK/mTOR signaling pathway. Cell Physiol Biochem. 2018; 47 (5): 2067-76. DOI:10.1159/000491474
32. Ganie SA, Dar ТА, Bhat AH, et al. Melatonin: A potential anti-oxidant therapeutic agent for mitochondrial dysfunctions and related disorders. Rejuvenation Res. 2016; 19 (1): 21-40. DOI:10.1089/rej. 2015.1704
33. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: Oxidative stress, inflammation,
and autophagy. Oxid Med Cell Longev. 2014;2014:102158. DOI:10.1155/2014/102158
34. Chen L, Hu L, Zhao J, et al. Chotosan improves Ap 1-42-induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-KB signaling in mice. Journal of Ethnopharmacology. 2016; 191: 398-407. DOI:10.1016/j.jep.2016.03.038
35. Duman TT, Aktas G, Atak BM, et al. Neutrophil to lymphocyte ratio as an indicative of diabetic control level in type 2 diabetes mellitus. African Health Sciences. 2019; 19 (1): 1602-6. DOI:10.4314/ahs. V19M.35
36. Sundberg I, Rasmusson AJ, Ramklint M, et al. Daytime melatonin levels in saliva are associated with inflammatory markers and anxiety disorders. Psychoneuroendocrinology. 2020; 112: 104514. DOI:10.1016/j.psyneuen.2019.104514
37. Ortiz F, Acuna-Castroviejo D, Doerrier C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015; 58 (1): 34-49. DOI:10.1111 /jpi.12191
38. Permpoonputtana K, Govitrapong P. The antiinflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopa-mine SH-SY5Y cell lines. Neurotox Res. 2013; 23: 189-99. DOI:10.1007/sl 2640-012-9350-7
39. Zarezadeh M, Khorshidi M, Emami M, et al. Melatonin supplementation and pro-inflammatory mediators: A systematic review and meta-analysis of clinical trials. European Journal of Nutrition. 2020; 59 (5): 1803-13. DOI:10.1007/s00394-019-02123-0
40. Maher AM, Saleh SR, Elguindy NM, et al. Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2, 3-dioxygenase 1 expression. Life Sciences. 2020; (247): 117427. DOI:10.1016/j. Ifs.2020.117427
41. Hardeland R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int J Mol Sci. 2019; 20 (5): 1223. DOI:10.3390/ijms20051223
42. Yuan H, Wu G, Zhai X, et al. Melatonin and rapamycin attenuate isoflurane-induced cognitive impairment through inhibition of neuroinflammation by suppressing the mTOR signaling in the hippocampus of aged mice. Front Aging Neurosci. 2019; 11: 314. DOI:10.3389/fnagi.2019.00314
43. Yang B, Zhang LY, Chen Y, et al. Melatonin alleviates intestinal injury, neuroinflammation and cognitive dysfunction caused by intestinal ischemia/reperfusion. Int Immunopharma-col. 2020; 85: 106596. DOI:10.1016/j.intimp.2020.106596
44. Bloemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanisms of memory loss. Prog Mol Biol Transl Sci. 2014; 121: 413-49. DOI:10.1016/B978-0-12-800101-1.00013-2
45. Sharma S, Singh H, Ahmad N, et al. The role of melatonin in diabetes: Therapeutic implications. Arch Endocrinol Metab. 2015; 59 (5): 391-9. DOI:10.1590/2359-3997000000098
46. Wongchitrat P, Lansubsakul N, Kamsrijai U, et al. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int. 2016; 100: 97-109. DOI:10.1016/j.neuint.2016.09.006
47. Kamsrijai U, Wongchitrat P, Nopparat C, et al. Melatonin attenuates streptozotocin-induced Alzheimer-like features in hyperglycemic rats. Neurochem Int. 2020; 132: 104601. DOM 0.1016/j. neuint.2019.104601
48. Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheim-ers Dis. 2014; 42 Suppl. 3: S125-52. DOM 0.3233/JAD-132738
49. Amer ME, Othamn Al, El-Missiry MA. Melatonin ameliorates diabetes-induced brain injury in rats. Acta Histochem. 2021; 123(2): 151677. DOI:10.1016/j.acthis.2020.151677
50. Carrasco C, Rodriguez AB, Pariente JA. Melatonin as a stabilizer of mitochondrial function: Role in diseases and aging. Turk J Biol. 2015; 39(6): 822-31. DOI:10.3906/biy-1504-26
Attachment | Size |
---|---|
2023_04_399-403.pdf | 336.69 KB |