Angiogenesis in adipose tissue under physiological conditions and in obesity (review)
Heading: Рathophysiology Article type: Review
Authors: Pylaev Т.Е., Smyshlyaeva I.V., Golovchenko V.M., Abramov A.M., Vasiliev Yu.Yu., Vysotsky L.I., Nazarova A.V., Pogosyan E.K., Deikhanov A.A., Popyhova E.B.
Organization: Saratov State Medical University
Abstract. Objective: to analyze current literature data on the role of endothelium in the development of micro- and macroangiopathy in obesity. Adipose tissue (AT) is a highly vascularized endocrine organ. Functional relationship between endotheliocytes and adipocytes is regulated by the paracrine pathway. AT generates adipokines, biologically active substances with pro- and anti-angiogenic activity, cytokines. The imbalance of these factors causes a violation of the angiogenesis process, resulting in the formation of functionally immature vessels and endothelial dysfunction, which underlie a number of diseases. When writing this review, we analyzed 50 scientific papers received in the following databases of the RSIC, CyberLeninka, Scopus, Web of Science, MedLine and PubMed databases from 2013 to 2021 using the following keywords: "angiogenesis", "obesity", "adipocytes", "endotheliocytes", "vascular endothelial growth factor", "pro-and antiangiogenic factors", "endothelial dysfunction". As a result of the analysis, it was shown that endothelial dysfunction plays an important role in the pathogenesis of obesity, causing the development of micro- and macroangiopathies in adipose tissue. A deeper understanding of the molecular mechanisms of interaction between adipocytes and the vascular endothelium in obesity will contribute to the development of new therapeutic approaches that reduce the risk of obesity-associated endothelial dysfunction.
Bibliography:
1. Rohde К, Keller М, la Cour Poulsen L, et al. Genetics and epigenetics in obesity. Metabolism. 2019; (92): 37-50. DOI: 10.1016/j. metabol. 2018.10.007.
2. Ungefroren H, Gieseler F, Fliedner S, Lehnert H. Obesity and cancer. Horm Mol Biol Clin Invest. 2015; (21): 5-15. DOI: 10.1515/hmbci-2014-0046.
3. Rosenwald M, Wolfrum О The origin and definition of brite versus white and classical brown adipocytes. Adipocytes. 2014; (3): 4-9. DOI: 10.4161/adip. 26232.
4. Bolotova NV, Timofeeva SV, Polyakov VK, et al. The role of kisspeptin in menstrual disorders in adolescent girls. Treatment of clinically manifested endocrine abnormalities. Doctor.Ru. 2020; 19 (2): 13-9.
5. Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Asp Med. 2013; (34): 1-11. DOI: 10.1016/j.mam. 2012.10.001.
6. Hafidi ME, Buelna-Chontal M, Sanchez-Munoz F, Car-bo R. Adipogenesis: a necessary but harmful strategy. Int J Mol Sci 2019; (20):3657. DOI: 10.3390/ijms20153657.
7. Longo M, Zatterale F, Naderi J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019; (20): 2358. DOI: 10.3390/ijms20092358.
8. Mancuso P. The role of adipokines in chronic inflammation. Immuno Targets Ther. 2016; (5): 47-56. DOI: 10.2147/ITT S73223.
9. Kwaifa IK, Bahari H, YongYK, Noor SM. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. Biomolecules. 2020; 10 (2): 291. DOI: 10.3390/biom10020291.
10. Vasina LV, Petrishchev NN, Vlasov TD. Markers of endothelial dysfunction. Regional Blood Circulation and Microcircula-tion. 2017; 16 (1): 4-15.
11. Petrishchev NN, Vasina LV. Disorders of adhesive activity as a form of endothelial dysfunction. Translational Medicine. 2014; (3): 5-15.
12. Stepanova TV, Ivanov AN, Popyhova ЕВ, Lagutina DD. Moleculare markers of the endothelial dysfunction. Modern Problems of Science and Education. 2019; (1):39.
13. Nijhawans Р, Behl Т, Bhardwaj S. Angiogenesis in obesity. Biomed Pharmacother. 2020; (126): 110103. DOI: 10.1016/j. biopha.2020.110103.
14. Cao Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 2013; (18): 478-89. DOI: 10.1016/j.cmet.2013.08.008.
15. Tanaka M, Itoh M, Ogawa Y, Suganami T. Molecular mechanism of obesity-induced «metabolic» tissue remodeling. J Diabetes Investig. 2018; 9 (2): 256-61. DOI: 10.1111/jdi. 12769.
16. Crewe C, Joffin N, Rutkowski J, et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell. 2018; (175): 695-708. e13. DOI: 10.1016/j.cell. 2018.09.005.
17. Draoui N, De Zeeuw P, Carmeliet P. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biol. 2017; (7): 170219. DOI: 10.1098/rsob.170219.
18. Sorop O, Olver TD, Van DeWouw J, et al. The micro-circulation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res. 2017; (113): 1035-45. DOI: 10.1093/cvr/cvx093.
19. Herold J, Kalucka J. Angiogenesis in adipose tissue: the interplay between adipose and endothelial cells. Front Physiol. 2021; (11): 624903. DOI: 10.3389/fphys. 2020.624903.
20. Hodson L, Humphreys SM, Karpe F, Frayn KN. Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes. 2013; (62): 1417-25. DOI: 10.2337/db12-1032.
21. Romantsova Tl. Adipose tissue: colors, depots and functions. Obesity and metabolism 2021; 18 (3): 282-301.
22. Lee YS, Kim JW, Osborne O, et al. Increased adipocyte 02consumption triggers HIF-1 a, causing inflammation and insulin resistance in obesity. Cell. 2014; (157): 1339-52. DOI: 10.1016/j. cell.2014.05.012.
23. Romantsova Tl, Sych YuP Immunometabolism and metainflammation in obesity. Obesity and metabolism 2019; 16 (4): 3-17. https://doi.org/10.14341/omet12218
24. Theodorou К, Boon RA. Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 2018; (6): 82. DOI: 10.3389/fcell.2018.00082.
25. Gusev EYu, Zotova NV, Zhuravleva YuA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Medical Immunology. 2020; 22 (1): 7-48.
26. Dovzhikova IV, Lutsenko МТ Membrane fatty acids transport (Review). Bulletin Physiology and Pathology of Respiration. 2013; (50): 130-8.
27. Goldberg IJ, Bornfeldt КЕ. Lipids and the endothelium: bidirectional interactions. Curr Atheroscler Rep. 2013; (15): 365. DOI: 10.1007/sl 1883-013-0365-1.
28. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019; (92): 98-107. DOI: 10.1016/j. metabol. 2018.10.011.
29. Sung HK, Doh КО, Son JE, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 2013; (17): 61-72. DOI: 10.1016/j. cmet.2012.12.010.
30. Schlich R, Willems M, Greulich S, et al. VEGF in the crosstalk between human adipocytes and smooth muscle cells: depot-specific release from visceral and perivascular adipose tissue. Mediat lnflamm.2013; (2013): 1-10. DOI: 10.1155/2013/982458.
31. Zhang F, Zarkada G, Han J, et al. Lacteal junction zipper-ing protects against diet-induced obesity. Science. 2018; (361): 599-603. DOI: 10.1126/science.aap9331.
32. Elias I, Franckhause S, Bosch F. Adipose tissue overex-pression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes. 2012; (61): 1801-13. DOI: 10.2337/db12-1274.
33. Lu X, Zheng Y Comment on: Elias et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 2012; (61): 1801-13. Diabetes. 2013; 62 (1): e3. DOI: 10.2337/db12-1130.
34. Seki T, Hosaka K, Fischer C, et al. Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning. J Exp Med. 2018; (215): 611-26. DOI: 10.1084/jem.20171012.
35. Robciuc MR, Kivela R, Williams IM, et al. VEGFB/VEG-FR1 -induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab. 2016; (23): 712-24. DOI: 10.1016/j.cmet.2016.03.004.
36. Hui W, Chen Y, Lu XA, et al. Endostatin prevents dietary-induced obesity by inhibiting adipogenesis and angiogenesis. Diabetes. 2015; (64): 2442-56. DOI: 10.2337/db14-0528.
37. ZhuGe DL, Javaid HMA, Sahar NE, et al. Fibroblast growth factor 2 exacerbates inflammation in adipocytes through NLRP3 inflammasome activation. Arch Pharm Res. 2020; (43): 1311-24. DOI: 10.1007/sl2272-020-01295-2.
38. Hammel JH, Bellas E. Endothelial cell crosstalk improves browning but hinders white adipocyte maturation in 3D engineered adipose tissue. Integr Biol. 2020; (12): 81-9. DOI: 10.1093/intbio/zyaa006.
39. Mehrotra D, Wu J, Papangeli I, Chun HJ. Endothelium as a gatekeeper of fatty acid transport. Trends Endocrinol Metab. 2014; (25): 99-106. DOI: 10.1016/j.tem.2013.11.001.
40. Drapkina OM. Atherogenic dyslipidemia and the liver. Gastroenterology. Supplement to Consilium Medicum. 2013; (1): 52-5.
41. Mishina ЕЕ, Mayorov AYu, Bogomolov PO, et al. Nonalcoholic fatty liver disease: cause or consequence of insulin resistance? Diabetes Mellitus. 2017; 20 (5): 335-43.
42. VerbovoyAF, Tsanava IA, Verbovaya Nl, Rudolf GA. Re-sistin — a marker of cardiovascular diseases. Obesity and Metabolism. 2017; 14 (4): 5-9.
43. Zheleznova ЕА, Zhernakova JuV, Pogorelova OA, et al. Vascular wall status and its link with perivascular adipose tissue and other fat depots in young patients with abdominal obesity. Systemic Hypertension. 2019; 16 (4): 80-6.
44. Yokoyama М, Okada S, Nakagomi A, et al. Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity. Cell Rep. 2014; (7): 1691-703. DOI: 10.1016/j. celrep.2014.04.046.
45. Sawada N, Jiang A, Takizawa F, et al. Endothelial PGC-1a mediates vascular dysfunction in diabetes. Cell Metab. 2014; (19): 246-58. DOI: 10.1016/j.cmet.2013.12.014.
46. Hashimoto S, Kubota N, Sato H, et al. Insulin receptor substrate-2 (Irs2) in endothelial cells plays a crucial role in insulin secretion. Diabetes. 2015; (64): 876-86. DOI: 10.2337/db14-0432.
47. Hasan SS, Jabs M, Taylor J, et al. Endothelial notch signaling controls insulin transport in muscle. EMBO Mol Med. 2020; (12): e09271. DOI:10.15252/emmm.201809271.
48. Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in
vivo and in vitro insulin sensitivity. Cell. 2017; (171): 372-84. DOI: 10.1016/j. cell. 2017.08.035.
49. Rudnicki M, Abdifarkosh G, Nwadozi E, et al. Endothe-lial-specific FoxOI depletion prevents obesity-related disorders by increasing vascular metabolism and growth. eLife. 2018; (7): e39780. DOI: 10.7554/eLife. 39780.
50. Tang X, Miao Y, Luo Y, et al. Suppression of endothelial AG01 promotes adipose tissue browning and improves metabolic dysfunction. Circulation. 2020; (142): 365-79. DOI: 10.1161/CIRCULATIONAHA.119.041231.
Attachment | Size |
---|---|
2022_4_618-625.pdf | 397.32 KB |