Saratov JOURNAL of Medical and Scientific Research

The role of visualization research methods in the diagnosis of primary muscle dystonia (review)

Year: 2022, volume 18 Issue: №3 Pages: 375-380
Heading: Neurology Article type: Review
Authors: Bushueva О.О., Antipenko E.A.
Organization: City Hospital №33 of the Leninsky District of Nizhny Novgorod, Privolzhskiy Research Medical University
Summary:

Objective: to analyze the literature data on the possibilities of neuro-imaging methods in the diagnosis of muscular dystonia. This article discusses the results of studies of diffusion tensor magnetic resonance imaging (MRI) with tractography (DT-MRI), voxel MR morphometry (VOM), functional MRI (fMRI), MR spectroscopy, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) of the brain in primary muscular dystonia. The research material was the analysis of literary data published in the PubMed and eLibrary databases. The period of electronic search was 1976-2021, combinations of the keywords "dystonia" and "neuro-imaging" were used. 34 sources were used to write the review. Despite the fact that the diagnosis of muscular dystonia is based on the clinical picture, the achievements of modern neuro-imaging methods can help in the differential diagnosis of primary and secondary forms of muscular dystonia, as well as determining the tactics of surgical treatment. To determine functional neuroanatomic substrates, the most preferred method of neuro-imaging is fMRI with measurement of the functional activity of the cerebral cortex, which is especially important for action-specific forms of dystonia and the choice of treatment tactics in functional neurosurgery.

Bibliography:
1. Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013; 28 (7): 863-73. DOI: 10.1002/mds.25475.
2. Quartarone A, Cacciola A, Milardi D, et al. New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain 2020; 143 (2): 396-406. DOI: 10.1093/brain/awz310.
3. Bianchi S, Fuertinger S, Huddleston H, et al. Functional and structural neural bases of task specificity in isolated focal dystonia. Mov Disord 2019; 34 (4): 555-63. DOI: 10.1002/mds. 27649.
4. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 2002; 43 (2): 111-7. DOI: 10.1016/s0168-0102(02)00027-5.
5. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010; 107 (18): 8452-6. DOI: 10.1073/pnas.1000496107.
6. Milardi D, Arrigo A, Anastasi G, et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography Front Neuroanat2016; 10: 29. DOI: 10.3389/fnana.2016.00029.
7. Hoshi E, Tremblay L, Feger J, et al. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005; 8 (11): 1491-3. DOI: 10.1038/nn1544.
8. Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. Exp Neurol 1976; 53 (3): 714-28. DOI: 10.1016/0014-4886(76)90150-3.
9. Fabbrini G, Pantano P, Totaro P, et al. Diffusion tensor imaging in patients with primary cervical dystonia and in patients with blepharospasm. Eur J Neurol. 2008; 15 (2): 185-9. DOI: 10.1111 /j. 1468-1331.2007.02034.x.
10. Zoons E, Booij J, Nederveen AJ, et al. Structural, functional and molecular imaging of the brain in primary focal dystonia — a review. Neuroimage 2011; 56 (3): 1011-20. DOI: 10.1016/j.neuroimage.2011.02.045.
11. Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41 (12): 3253-65. DOI: 10.1002/hbm.25012.
12. Colosimo C, Pantano P, Calistri V, et al. Diffusion tensor imaging in primary cervical dystonia. J Neurol Neurosurg Psychiatry 2005; 76 (11): 1591-3. DOI: 10.1136/jnnp. 2004.056614.
13. Кротенкова M. В., Брюхов В. В., Морозова С. Н. и др. Современные технологии нейровизуализации (лекция). Радиология — практика. 2017; 2 (62): 47-63.
14. Etgen Т, Muhlau М, Gaser С, et al. Bilateral grey-matter increase in the putamen in primary blepharospasm. J Neurol Neurosurg Psychiatry 2006; 77(9): 1017-20. DOI: 10.1136/jnnp. 2005.087148.
15. Bradley D, Whelan R, Walsh R, et al. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia. Brain 2009; 132 (Pt 9): 2327-35. DOI: 10.1093/brain/awp156.
16. Black KJ, Ongur D, Perlmutter JS. Putamen volume in idiopathic focal dystonia. Neurology 1998; 51 (3): 819-24. DOI: 10.1212/wnl.51.3.819.
17. Obermann M, Yaldizli O, De Greiff A, et al. Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord 2007; 22 (8): 1117-23. DOI: 10.1002/mds.21495.
18. Martino D, Di Giorgio A, D'Ambrosio E, et al. Cortical gray matter changes in primary blepharospasm: a voxel-based morphometry study. Mov Disord 2011; 26 (10): 1907-12. DOI: 10.1002/mds.23724.
19. Delmaire C, Vidailhet M, Elbaz A, et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology 2007; 69 (4): 376-80. DOI: 10.1212/01 .wnl. 0000266591.49624.1a.
20. Garraux G, Bauer A, Hanakawa T, et al. Changes in brain anatomy in focal hand dystonia. Ann Neurol 2004; 55 (5): 736-9. DOI: 10.1002/ana.20113.
21. Tomic A, Agosta F, Sarasso E, et al. Brain structural changes in focal dystonia-what about task specificity? A mul-timodal MRI study. Mov Disord 2021; 36 (1): 196-205. DOI: 10.1002/mds.28304.
22. Nevrly M, Hlustik P, Hok P, et al. Changes in sensorimotor network activation after botulinum toxin type A injections in patients with cervical dystonia: a functional MRI study. Exp Brain Res 2018; 236 (10): 2627-37. DOI: 10.1007/s00221 -018-5322-3.
23. Beukers RJ, van der Meer JN, van der Salm SM, et al. Severity of dystonia is correlated with putaminal gray matter changes in myoclonus-dystonia. Eur J Neurol 2011; 18 (6): 906-12. DOI: 10.1111/j. 1468-1331.2010.03321.x.
24. Liu J, Li L, Chen L, et al. Grey matter changes in Meige syndrome: A voxel-based morphology analysis. Sci Rep 2020; 10 (1): 14533. Published 2020 Sep 3. DOI: 10.1038/S41598-020-71479-9.
25. Uehara K, Furuya S, Numazawa H, etal. Distinct roles of brain activity and somatotopic representation in pathophysiology of focal dystonia. Hum Brain Mapp 2019; 40 (6): 1738-49. DOI: 10.1002/hbm.24486.
26. Opavsky R, Hlustik P, Otruba P, Kanovsky P. Somato-sensory cortical activation in cervical dystonia and its modulation with botulinum toxin: an fMRI study. Int J Neurosci 2012; 122(1): 45-52. DOI: 10.3109/00207454.2011.623807.
27. Levy LM, Hallett M. Impaired brain GABA in focal dystonia. Ann Neurol 2002; 51 (1): 93-101.
28. Simonyan K. Neuroimaging applications in dystonia. Int Rev Neurobiol 2018; (143): 1-30. DOI: 10.1016/bs.irn. 2018.09.007.
29. Gallea C, Herath P, Voon V, et al. Loss of inhibition in sensorimotor networks in focal hand dystonia. Neuroimage Clin 2017; (17): 90-7. Published 2017 Oct 13. DOI: 10.1016/j.nicl. 2017.10.011.
30. Belenky V, Stanzhevsky A, Klicenko O, et al. Brain positron emission tomography with 2-18F-2-deoxi-D-glucose of patients with dystonia and essential tremor detects differences between these disorders. Neuroradiol J 2018; 31 (1): 60-8. DOI: 10.1177/1971400917719912.
31. Naumann M, Magyar-Lehmann S, Reiners K, et al. Sensory tricks in cervical dystonia: perceptual dysbalance of parietal cortex modulates frontal motor programming. Ann Neurol 2000; 47 (3): 322-8.
32. Hierholzer J, Cordes M, Schelosky L, et al. Dopamine D2 receptor imaging with iodine-123-iodobenzamide SPECT in idio-pathic rotational torticollis [published correction appears in J Nucl Med 1995; 36 (4): 568]. J Nucl Med 1994; 35 (12): 1921-7.
33. Horstink CA, Praamstra P, Horstink MW, et al. Low stria-tal D2 receptor binding as assessed by [123I] IBZM SPECT in pa- tients with writer's cramp. J Neurol Neurosurg Psychiatry 1997; 62 (6): 672-3.
34. Reichel G, Stenner A, Jahn A. Cervical dystonia: clinical-radiological correlations and recommendations for the correction of botulinum therapy. S. S. Korsakov Journal of Neurology and Psychiatry 2012; 112 (1): 73-9.

AttachmentSize
2022_3_375-380.pdf1.08 MB

No votes yet