Роль mTOR в репрограммировании опухоль-ассоциированных макрофагов и в канцерогенезе (обзор)
Рубрика: Патологическая физиология Тип статьи: Обзор
Авторы: Мартынова Т.Н., Малышев И.Ю.
Организация: ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А. И. Евдокимова» Минздрава России, ФГБНУ «Научно исследовательский институт общей патологии и патофизиологии»
Макрофаги — гетерогенная популяция клеток, которые дифференцируются в различные функциональные группы в зависимости от полученных сигналов. Агонисты toll-like рецепторов и цитокины воздействуют на соответствующие рецепторы, вызывая изменения метаболизма и экспрессии генов в миелоидных клетках системы врожденного иммунитета. Данные изменения в фагоцитах происходят в процессе их активации, в результате они становятся поляризованными в том или ином направлении, приобретая определенный фенотип. Данные изменения экспрессии генов реализуются в опухолевом микроокружении. mTOR (mammalian target of rapamycin) — серин/треониновая протеинкиназа, которая реагирует на различные стимулы окружения клетки изменением ее метаболизма. mTOR также принимает участие в процессе активации макрофагов. Тема представленного обзора литературы: роль mTOR в репрограммировании макрофагов, в том числе опухоль-ассоциированных. Для поиска информации использовалась база данных PubMed.
Литература:
1. Katholnig К, Linke M, Pham H,etal. Immune responses of macrophagesand dendritic cells regulated by mTOR signaling. Biochemical Society Transactions 2013; 41 (4): 927-33.
2. Crisan TO, Netea MG, Joosten LA. Innate immune memory: Implications for host responses to damage-associated molecular patterns. European Journal of Immunology 2016; 46 (4): 817-28.
3. Luca C, Fragkogianni S, Sims AH, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019; 35 (4): 588-602.
4. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149 (2): 274-93.
5. Covarrubias AJ, Aksoylar HI, Horng T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in Immunology 2015; 27 (4): 286-96.
6. Abdalla AE, Li Q, Xie L, et al. Biology of IL-27 and its Role in the Host Immunity against Mycobacterium Tuberculosis. International Journal Biological Sciences 2015; 11 (2): 168-75.
7. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation 2012; 122(3)787-95.
8. Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity 2015;43: 435-49.
9. Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 2011; 12 (3): 231-8.
10. Jenkins SJ, Ruckerl D, Thomas GD, et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. The Journal of Experimental Medicine 2013; 210 (11): 2477-91.
11. Odegaard Jl, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447(7148): 1116-20.
12. Mantovani A, Marchesi F, Malesci A, et al. Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14: 399-416.
13. Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: Tumor-associated macrophages: Undisputed stars of the inflammatory tumor microenvironment. Clin Exp Immunol 2012; 167: 195-205.
14. Zumsteg A, Christofori G. Corrupt policemen: Inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 2009; 21: 60-70.
15. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011 Oct25;11 (11): 750-61.
16. R. Ostuni F, Kratochvill PJ, Murray, et al. Macrophages and cancer: from mechanisms to therapeutic implications. Trends in Immunology 2015; 36 (4): 229-39.
17. Mercalli A, Caiavita I, Dugnani E, et al. Rapamycin unbalances the polarization of human macrophages to M1. Immunology 2013; 140(2): 179-90.
18. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular Cell 2010; 40 (2): 310-22.
19. Schmitz F, HeitA, Dreher S, et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. The European Journal of Immunology 2008; 38 (11): 2981-92.
20. Chen H, Cowan MJ, Hasday JD, et al. Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-kappaB in alveolar macrophages stimulated with TLR2 and TLR4 agonists. Journal of Immunology 2007; (179): 6097-106.
21. Hedl M, Abraham О Secretory Mediators Regulate Nod2-lnduced Tolerance in Human Macrophages. Gastroenterology 2011; 140 (1): 231-41.
22. Wang Z, Zhou S, Sun C, et al. Interferon-y inhibits nonopsonized phagocytosis of macrophages via an mTORCI-c/EBPp pathway. Journal of Innate Immunity 2015; 7 (2): 165-76.
23. Sharma G, Dutta RK, Khan MA, et al. IL-27 inhibits IFN-y induced autophagy by concomitant induction of JAK/PI3 K/Akt/mTOR cascade and up-regulation of Mcl-1 in Mycobacterium tuberculosis H37Rv infected macrophages. International Journal of Biochemistry & Cell Biology 2014; (55): 335-47.
24. Bosmann M, Haggadone MD, Hemmila MR, et al. Complement activation product C5a is a selective suppressor of TLR4-induced, but not TLR3-induced, production of IL-27 (p28) from macrophages. Journal of Immunology 2012; 188 (10): 5086-93.
25. Ding A, Hongfeng J, Westerterp M, et al. Disruption of mTORCI in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis. Circulation Research 2014; 114 (10): 1576-84.
26. Naugler WE, Karin M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends in Molecular Medicine 2008; 14 (3): 109-19.
27. Goncharova EA, Goncharov DA, Damera G, et al. Signal transducer and activator of transcription 3 is required for abnormal proliferation and survival of tsc2-deficient cells: Relevance to pulmonary lymphangioleiomyomatosis. Molecular Pharmacology 2009 (76): 766-77.
28. Schroer N, Pahne J, Walch B, et al. Molecular pathobiology of human cervical high-grade lesions: Paracrine stat3 activation in tumor-instructed myeloid cells drives local mmp-9 expression. Cancer Research 2011; (71): 87-97.
29. Dyken van SJ, Locksley RM. lnterleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 2013; 31: 317-43.
30. Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Molecular Cell Biology 2002; 22 (20): 7004-14.
31. Kim SY, Choi YJ, Joung SM, et al. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology 2010; 129 (4): 516-24.
32. WengerRH. Cellularadaptationto hypoxia: 02-sensing protein hydroxylases, hypoxia-inducible transcription factors, and 02-regulated gene expression. The FASEB Journal 2002; 16 (10): 1151-62.
33. Semenza GL. Targeting hif-1 for cancer therapy. National Reviews. Cancer 2003; (3): 721-32.
34. Csibi A, et al. The mTORCI/S6K1 pathway regulates glutamine metabolism through the elF4B-dependent control of c-Myc translation. Current biology 2014; 24 (19): 2274-80.
35. Sears R, Nuckolls F, Haura E, et al. Multiple Ras-dependent phosphorylation pathways regulate Мус protein stability. Genes & Development 2000; 14 (19): 2501-14.
36. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 2006; 177 (10): 7303-11.
37. Xu X, Grijalva A, Skowronski A, et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metabolism 2013; (18): 816-30.
38. Liu H, Ma Y, Cole SM, et al. Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood 2003; 102 (1): 344-52.
39. Philip B, Ito K, Moreno-Sanchez R, etal. HIF expression and the role of hypoxic microenvironments within primary tumors as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 2013; 34 (8): 1699-707.
40. Muraoka-Cook RS, Kurokawa H, Koh Y, et al. Conditional overexpression of active transforming growth factor betal in vivo accelerates metastases of transgenic mammary tumors. Cancer Research 2004; 64 (24): 9002-11.
41. Chen W, Ma T, Shen X, et al. Macrophage-lnduced Tumor Angiogenesis Is Regulated by the TSC2 — mTOR Pathway. Cancer Research 2012; (72): 1363.
42. Ma J, Meng Y, Kwiatkowski DJ, et al. Mammalian target of rapamycin regulates murine and human cell differentiation
through STAT3/p63/Jagged/Notch cascade. The Journal of Clinical Investigation 2010; (120): 103-14.
43. Sumimoto H, Imabayashi F, Iwata T, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. The Journal of Experimental Medicine 2006; (203): 1651-6.
44. Cannon MJ, Ghosh D, Gujja S. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages. Vaccines (Basel) 2015; 3 (2): 448-66.
45. Bosch van den MW M, Palsson-Mcdermott E, Johnson DS, et al. LPS Induces the Degradation of Programmed Cell Death Protein 4 (PDCD4) to Release Twist2, activating c-Maf Transcription to Promote lnterleukin-10 Production. The Journal of Biological Chemistry 2014; (289): 22980-90.
46. Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. The Journal of Clinical Investigation 2008; 118 (10): 3367-77.
47. Foekens JA, Peters HA, Look, et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000; (60): 636-43.
48. Bonde AK, Tischler V, Kumar S. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. ВМС Cancer 2012; (12): 35.
49. Thomas DA, Massague J. TGF-p directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; (8): 369-80.
50. Sica A, Melillo G, Varesio L. Hypoxia: A double-edged sword of immunity. J Mol Med 2011; (89): 657-65.
Прикрепленный файл | Размер |
---|---|
2020_01_115-121.pdf | 602.97 кб |