Saratov JOURNAL of Medical and Scientific Research

Biomechanical aspects of circular spondylosynthesis of transitional thoracolumbar spine

Year: 2018, volume 14 Issue: №3 Pages: 560-566
Heading: Traumatology and Orthopedics Article type: Original article
Authors: Likhachev S.V., Zaretskov V.V., Arsenievich V.B., Shul'ga A.E., Shchanitsyn I.N., Skripachenko K.K.

Aim: to present the potential of biomechanical modeling in individual choice of optimal surgical correction method for transitional thoracolumbar spine injury. Material and Methods. We built solid-base 3-dimensional model of the investigated spine segment in Mimics13 on the basis of CT data of injured thoracolumbar spine. Cage and anchorage models were created in CAE system SolidWorks. Numeric modeling was performed in ANSYS in Workbench medium. We analyzed full movement fields, their maximum values for each model as well as equivalent stress in vertebra and anchorage systems. Results. The analysis of equivalent stress and full movement fields emerging in the models under seven basic types of load revealed the most stable spondylosynthesis model which is circular spine

1 Bradford DS, McBride GG. Surgical management of thoracolumbar spine fractures with incomplete neurologic deficits. Clin Orthop Relat Res 1987; (218): 201-6
2 Hashimoto T, Kaneda K, Abumi K. Relationship between Traumatic Spinal Canal Stenosis and Neurologic Deficits in Thoracolumbar Burst Fractures. Spine (Phila Pa 1976) 1988; (13): 1268-72
3 Zaretskov VV, Arsenievich VB, Likhachev SV, et al. A clinical case study of long-term injury of the thoracic and lumbar spine. Ortopediya, travmatologiya i vosstanovitel'naya hirurgiya detskogo vozrasta 2016; 4 (2): 61-6. возраста 2016; 42): 61-6
4 Jacobs С, РЩдег MM, Scheldt S, et al. Three-dimensional thoracoscopic vertebral body replacement at the thoracolumbar junction. Oper Orthop Traumatol 2018; 30 (5): 388-9
5 Norkin IA, Zaretskov VV, Levchenko KK, et al. Perspectives for vertebrology teaching development in higher medical schools. Saratov Journal of Medical Scientific Research 2015; 11 (2): 210-2
6 Zaletina AV, Vissarionov SV, Baindurashvili AG, et al. Structure of spinal injuries in children in regions of the Russian Federation. Spine surgery 2017; 14 (4): 52-60
7 Reinhold М, Кпор С, Beisse R, et al. Operative treatment of 733 patients with acute thoracolumbar spinal injuries: comprehensive results from the second, prospective, internet-based multicenter study of the Spine Study Group of the German Association of Trauma Surgery. Eur Spine J 2010; (19): 1657-76
8 Fadeev EM, Haydarov VM, Vissarionov SV, et al. Rate and structure of complications in spine surgery. Ortopediya, travmatologiya i vosstanovitel'naya hirurgiya detskogo vozrasta 017; 5 (2): 75-83
9 Waqar М, Van-Popta D, Barone DG, et al. Short versus long-segment posterior fixation in the treatment of thoracolumbar junction fractures: a comparison of outcomes. Br J Neurosurg 2017; (31): 54-7
10 Arsenievich VB, Zaretskov VV, Shul'ga AE, et al. Outcomes of polysegmental ventral system application for thoracolumbar junction injuries. Spine surgery 2007; (3): 16-9
11 Spiegl UJA, Jarvers J-S, Heyde C-E, et al. Zeitverzgerte Indikationsstellungzuradditivventralen Versorgungthorakolumbaler Berstungsfrakturen. Unfallchirurg 2016; (119): 664-72
12 Bogomolova NV, Shul'ga AE, Zaretskov VV, et al. Peculiarities of Reparative Osteogenesis of Injured Thoracic and Lumbar Vertebral Bodies at Different Terms after Trauma. Vestnik travmatologii i ortopedii imeni N.N. Priorova 2016; (4): 44-9
13 Li В, Sun С, Zhao С, Yao X, et al. Epidemiological profile of thoracolumbar fracture (TLF) over a period of 10 years in Tianjin, China. J Spinal Cord Med 2018: 1-6 DOI: 10.1080/10790268.2018.1455018
14 Ovechkina AV, Baindurashvili AG, Zaletina AV, et al. Rehabilitation of children at the inpatient stage after surgical treatment of unstable fractures of the thoracolumbar and lumbar spine. OrtopediB, travmatologie i vosstanovitesnae hirurgiB detskogo vozrasta 2017; 5 (4): 53-9
15 Shul'ga AE, Zaretskov VV, Ostrovskii VV, et al. Towards the causes of secondary post-traumatic deformations of thoracic and lumbar spine. Saratov Journal of Medical Scientific Research 2015; 11 (4): 570-5
11 (4): 570-5). 16 Kwon WK, Park WB, Lee GY, et al. Decompression with "Lateral pediculectomy" and circumferential reconstruction for unstable Thoracolumbar Burst Fractures: Surgical Techniques and Results in 18 Patients. World Neurosurg 2018 DOI: 10.1016/j.wneu.2018.07.137
17 Ould-Slimane M, Damade C, Lonjon G, et al. Instrumented Circumferential Fusion in Two Stages for Instable Lumbar Fracture: Long-Term Results of a Series of 74 Patients on Sagittal Balance and Functional Outcomes. World Neurosurg 2017; (103): 303-9
18 Jo DJ, Kim KT, Kim SM, et al. Single-Stage Posterior Subtotal Corpectomy and Circumferential Reconstruction for the Treatment of Unstable Thoracolumbar Burst Fractures. J Korean Neurosurg Soc2016; (59): 122-5
19 Armagagnian G, Peltier E, Graillon T, et al. Arthrodnse circonffirentielle par voie mini-invasive dans la prise en charge des ^sions rachidiennes thoracolombaires cyphosantes: note technique. Neurochirurgie 2015; (61): 260-5
20 Sait A, Prabhav NR, Sekharappa V, et al. Biomechanical comparison of short-segment posterior fixation including the fractured level and circumferential fixation for unstable burst fractures of the lumbar spine in a calf spine model. J Neurosurg Spine 2016; (25): 602-9
21 Panchal RR, Matheis EA, Gudipally M, et al. Is lateral stabilization enough in thoracolumbar burst fracture reconstruction? A biomechanical investigation. Spine J 2015; (15): 2247-53
22 Wu C-C, Jin H-M, Yan Y-Z, et al. Biomechanical Role of the Thoracolumbar Ligaments of the PosteriorLigamentous Complex: A Finite Element Study. World Neurosurg 2018; (112): 125-33
23 Dol AV, Dol ES, Ivanov DV Biomechanical modelling of surgical reconstructive treatment of spinal spondylolisthesis at L4-L5 level. Russian Journal of Biomechanics2018; 22 (1): 31-44
24 Kudyashev AL, Hominets VV, Teremshonok AV, et al. Biomechanical background for the formation of proximal transition kyphosis after the transpedicular fixation of the lumbar spine. Russian Journal of Biomechanics 2017; 21 (3): 313-23
25 Lee СН, Hsu СС, Huang PY Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. Comput Biol Med 2017; (87): 250-7
26 Lima LVPC, Charles YP, Rouch P, Skalli W Limiting interpedicular screw displacement increases shear forces in screws: A finite element study. Orthop Traumatol Surg Res 2017; (103): 721-6
27 Dreischarf M, Schmidt H, Putzier M, Zander T Biomechanics of the L5-S1 motion segment after total disc replacement: Influence of iatrogenic distraction, implant positioning and preoperative disc height on the range of motion and loading of facet joints. J Biomech 2015; (48): 3283-91
28 Wu W, Chen C, Ning J, et al. A Novel Anterior Transpedicular Screw Artificial Vertebral Body System for Lower Cervical Spine Fixation: A Finite Element Study. J Biomech Eng 2017; (139): 61-3
29 Weinstein AM, Klawitter JJ, Cook SD. Finite element analysis as an aid to implant design. Biomater Med Devices Artif Organs 1979; (7): 169-75
30 Shirado O. Thoracolumbar burst fractures; an experimental study on cadaveric spines and finite element method. Nihon Seikeigeka Gakkai Zasshi 1993; (67): 644-54.

2018_3-1_560-566.doc77.62 KB

No votes yet