Разработка рабочей аналитической панели биомаркеров дезадаптивного ремоделирования миокарда (систематический обзор)
Рубрика: Кардиология Тип статьи: Обзор
Авторы: Малинова Л.И., Денисова Т.П., Фурман Н.В., Долотовская П.В., Пучиньян Н.Ф., Поварова Т.В.
Организация: ФГБОУ ВО Саратовский ГМУ им. В.И. Разумовского Минздрава России, НУЗ Дорожная клиническая больница ОАО «РЖД»
Цель: на основании данных литературы сформировать рабочую аналитическую панель биомаркеров (БМ) дезадаптивного ремоделирования миокарда/дисфункции экстрацеллюлярного матрикса миокарда. Для экс- тракции данных использовали eLibrary.ru и PubMed. Рассчитывали воспроизводимость полученных данных, интрагрупповые корреляционные связи БМ дезадаптивного ремоделирования миокарда/дисфункции экстра-целлюлярного матрикса миокарда с клиническим фенотипом сердечной недостаточности (СН) — т. Формирование рабочей панели БМ проводилось методом ранжирования (R). В анализ включены данные 5085 публикаций. Наиболее высокая воспроизводимость была у наутрийуретических пептидов ((3 0,91 и 0,89) и сердечных тропонинов ((3 0,84), тогда как наибольшая сила корреляционных отношений БМ и клинического фенотипа СН — у натрийуретических пептидов и ST2 (т 0,81; 0,77 и 0,71). PIIINP и декорин не обнаружили достоверных корреляционных связей с клиническим фенотипом СН. Ранг 0,5 и выше выявлен относительно галектина-3, GDF-15 и остеопонтина. На основании проведенного анализа сформирована совокупность биомаркеров с доказанным участием в патогенезе сердечной недостаточности, которая потенциально обладает наибольшим диагностическим и прогностическим значением, — рабочая аналитическая панель биомаркеров дезадаптивного ремоделирования миокарда/дисфункции экстрацеллюлярного матрикса миокарда: NT-proBNP, BNP, сердечные вч-тропонины, ST2, GDF-15, галектин-3 и остеопонтин.
Литература:
1 Wan TTH, Terry A, Cobb E, et al. Strategies to Modify the Risk of Heart Failure Readmission: A Systematic
Review and Meta-Analysis. Health services research and managerial epidemiology 2017; 4: 2333392817701050
2 Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and
chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the
European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA)
of the ESC. Eur Heart J 2016
3 Gupta A, Allen LA, Bhatt DL, et al. Association of the Hospital Readmissions Reduction Program
Implementation with Readmission and Mortality Outcomes in Heart Failure. JAMA cardiology 2017
4 Maisel A. Biomonitoring and biomarker-guided therapy: the next step in heart failure and biomarker research. J
Am Coll Cardiol2011;58: 1890-2.
5 Fonarow GC. Biomarker-Guided vs Guideline-Directed Titration of Medical Therapy for Heart Failure. JAMA
2017; 318: 707-8.
6 Фомин И. В., Беленков Ю.Н., Мареев В.Ю. и др. Распространенность ХСН в европейской части Российской Федерации: данные ЭПОХА-ХСН. Сердечная недостаточность 2006; 7: 4-7.
7 Rukosuev VS, Nanaev АК, Samko AN, et al. The localization of the components of the extracellular matrix and
cytoskeleton in myocardial biopsies in alcoholic cardiomyopathy Biulleten Vsesoiuznogo kardiologicheskogo
nauchnogo tsentra AMN SSSR 1989; 12:88-94.
8 Sanchez-Quintana D, Garcia-Martinez V, Macias D, Hurle JM. Structural arrangement of the extracellular
matrix network during myocardial development in the chick embryo heart. Anatomy and embryology 1991; 184: 451
-60
9 Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017;
127: 1600-12.
10 Ueland T, Laugsand LE, Vatten LJ, et al. Extracellular matrix markers and risk of myocardial infarction: The
HUNT Study in Norway. Eur J Prev Cardiol 2017; 24: 1161-7.
11 Emdin M, Vittorini S, Passino C, Clerico A. Old and new biomarkers of heart failure. European Journal of
Heart Failure 2009; 11:331-5.
12 Liu JH, Chen Y, Zhen Z, et al. Relationship of biomarkers of extracellular matrix with myocardial function in
Type 2 diabetes mellitus. Biomark Med 2017; 11: 569-78.
13 Tromp J, Khan MA, Klip IT, et al. Biomarker Profiles in Heart Failure Patients with Preserved and Reduced
Ejection Fraction. JAm Heart Assoc 2017; 6
14 Rockey DC, Bell PD, Hill JA. Fibrosis —A Common Pathway to Organ Injury and Failure. N Engl J Med 2015;
373: 96
15 Беленков Ю.Н., Привалова E.B., Чекнева И. С. Мозговой натрийуретический пептид — современный биомаркер хронической сердечной недостаточности. Кардиология 2008: 62-9.
16 Vodovar N, Seronde MF, Laribi S, et al. Post-translational modifications enhance NT-proBNP and BNP
production in acute decompensated heart failure. Eur Heart J 2014;35:3434-41.
17 Maisel A. Biomonitoring and biomarker-guided therapy: the next step in heart failure and biomarker research. J
Am Coll Cardiol 2011; 58: 1890-2.
18 Sanchez-Mas J, Lax A, Asensio-Lopez MC, et al. Galectin-3 expression in cardiac remodeling after myocardial
infarction. Int J Cardiol 2014; 172: e98-e101.
19 Gonzalez GE, Cassaglia P, Noli Truant S, et al. Galectin-3 is essential for early wound healing and ventricular
remodeling after myocardial infarction in mice. Int J Cardiol 2014; 176: 1423-5.
20 Fiuzat M, Schulte PJ, Felker M, et al. Relationship between galectin-3 levels and mineralocorticoid receptor
antagonist use in heart failure: analysis from HF-ACTION. J Card Fail 2014; 20: 38-44.
21 George M, Jena A, Srivatsan V, et al. GDF 15 — A Novel Biomarker in the Offing for Heart Failure. Current
cardiology reviews 2016; 12: 37-46.
22 McLaren JE, Michael DR, Salter RC, et al. IL-33 reduces macrophage foam cell formation. J Immunol 2010;
185: 1222-9.
23 Willems S, Hoefer I, Pasterkamp G. The role of the Interleukin 1 receptor-like 1 (ST2) and lnterleukin-33
pathway in cardiovascular disease and cardiovascular risk assessment. Minerva Med 2012; 103: 513-24.
24 Michael DR, Ashlin TG, Davies CS, et al. Differential regulation of macropinocytosis in macrophages by
cytokines: implications for foam cell formation and atherosclerosis. Cytokine 2013;64:357-61.
25 Januzzi JL, Jr. ST2 as a cardiovascular risk biomarker: from the bench to the bedside. J Cardiovasc Transl
Res 2013; 6: 493-500.
26 Medeiros Nl, Gomes JAS, Correa-Oliveira R. Synergic and antagonistic relationship between MMP-2 and
MMP-9 with fibrosis and inflammation in Chagas cardiomyopathy. Parasite Immunol 2017; 39 DOI: 10.1111 /pirn.
12446
27 Radosinska J, Barancik M, Vrbjar N. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Med
2017; 59:241-253.
28 Michalska-Kasiczak M, Bielecka-Dabrowa A, von Haehling S, et al. Biomarkers, myocardial fibrosis and co-
morbidities in heart failure with preserved ejection fraction: an overview. Archives of medical science (AMS) 2018; 14:
890-909.
29 Lepojarvi ES, Piira OP, Paakko E, et al. Serum PINP, PIIINP, galectin-3, and ST2 as surrogates of myocardial
fibrosis and echocardiographic left venticular diastolic filling properties. Front Physiol 2015; 6: 200
30 Li G, Yan QB, Wei LM. Serum concentrations of hyaluronic acid, procollagen type III NH2-terminal peptide,
and laminin in patients with chronic congestive heart failure. Chin Med Sci J 2006; 21: 175-8.
31 Medeiros DM, Velleman SG, Jarrold BB, et al. Ontogeny of enhanced decorin levels and distribution within
myocardium of failing hearts. Connective tissue research 2002; 43: 32-43.
32 Chaggar P, Watkins A, Crtichley W, et al. Serum decorin correlates with the heart failure phenotype. Heart
Failure Journal 2017; 19 (S. 1): 165
33 Zhang F, Dang Y, Li Y, et al. Cardiac Contractility Modulation Attenuate Myocardial Fibrosis by Inhibiting TGF-
betal/Smad3 Signaling Pathway in a Rabbit Model of Chronic Heart Failure. Cellular physiology and biochemistry:
international journal of experimental cellular physiology, biochemistry, and pharmacology 2016; 39: 294-302.
34 Lopez B, Gonzalez A, Lindner D, et al. Osteopontin-mediated myocardial fibrosis in heart failure: a role for
lysyl oxidase? Cardiovasc Res 2013; 99: 111 -20
35 Brilla CG. Renin-angiotensin-aldosterone system and myocardial fibrosis. Cardiovasc Res 2000; 47: 1-3.
36 Zhi H, Luptak I, Alreja G, et al. Effects of direct Renin inhibition on myocardial fibrosis and cardiac fibroblast
function. PLoSOne2013;8:e81612.
37 Li C, Han R, Kang L, et al. Pirfenidone controls the feedback loop of the AT1 R/p38 MAPK/renin-angiotensin
system axis by regulating liver X receptor-alpha in myocardial infarction-induced cardiac fibrosis. Sci Rep 2017; 7:
40523
38 Pavo N, Goliasch G, Wurm R, et al. Low- and High-renin Heart Failure Phenotypes with Clinical Implications.
Clin Chem 2017 DOI: 10.1373/clinchem. 2017.278705.
39 Stoiser B, Mortl D, Hulsmann M, et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor
of outcome in heart failure. Eur J Clin Invest 2006; 36: 771-8.
40 Mockel M, Searle J. Copeptin — marker of acute myocardial infarction. Current atherosclerosis reports 2014;
16: 421
41 Stoiser B, Mortl D, Hulsmann M, et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor
of outcome in heart failure. Eur J Clin Invest 2006; 36: 771-8.
42 Zhong Y, Wang R, Yan L, et al. Copeptin in heart failure: Review and meta-analysis. Clin Chirm Acta 2017;
475: 36-43.
43 Liao Y, Takashima S, Maeda N, et al. Exacerbation of heart failure in adiponectin-deficient mice due to
impaired regulation of AMPK and glucose metabolism. Cardiovasc Res 2005;67:705-13.
44 Shibata R, Ouchi N, Ito M, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med
2004; 10: 1384-9.
45 Bristow MR, Long CS. Cardiotrophin-1 in heart failure. Circulation 2002; 106: 1430-2.
46 Lopez B, Gonzalez A, Querejeta R, etal. Association of cardiotrophin-1 with myocardial fibrosis in
hypertensive patients with heart failure. Hypertension 2014; 63: 483-9.
47 Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved
ejection fraction: contributions of collagen and titin. Circulation 2015; 131: 1247-59.
48 Franssen C, Gonzalez Miqueo A. The role of titin and extracellular matrix remodelling in heart failure with
preserved ejection fraction. Netherlands heart journal: monthly journal of
the Netherlands Society of Cardiology and the Netherlands Heart Foundation 2016; 24: 259-67.
49 Lopez B, Gonzalez A, Ravassa S, et al. Circulating Biomarkers of Myocardial Fibrosis: The Need for a
Reappraisal. J Am Coll Cardiol 2015; 65: 2449-56.
50 Du W, Piek A, Schouten EM, et al. Plasma levels of heart failure biomarkers are primarily a reflection of
extracardiac production. Theranostics 2018; 8: 4155-69.
Прикрепленный файл | Размер |
---|---|
2019_03-1_773-779.pdf | 342.44 кб |