Saratov JOURNAL of Medical and Scientific Research

Parakhonsky B.V.

Saratov National Research University n.a. N. G. Chernychevsky, Educational and Research Institute of Nanostructures and Biosystems, Senior Research Assistant, Candidate of Physical and Mathematical Sciences

The estimation of biocompatibility of polycaprolactone matrices mineralized by vat-erite in subcutaneous implantation tests in white rats

Year: 2018, volume 14 Issue: №3 Pages: 451-456
Heading: Physiology and Pathophysiology Article type: Original article
Authors: Ivanov A.N., Kurtukova М.О., Kozadaev M.N., Tyapkina D.A., Kustodov S.V., Saveleva M.S., Bugaeva I.O., Parakhonsky B.V., Galashina E.A., Gladkova E.V., Norkin I.A.
Organization: Saratov National Research University n.a. N. G. Chernyshevsky
Summary:

Aim: to estimate biocompatibility of matrices produced from polycaprolactone (PCL) and mineralized by vaterite (CaC03) by studying local and systemic manifestations of inflammatory reaction in subcutaneous implantation tests in white rats. Material and Methods. The experiment was conducted on 40 rats divided into four equal groups: control, comparison (rats with imitation of implantation), negative control (rats with implanted non-biocompatible matrices) and experimental group, comprised of animals with implanted PCL/CaC03-matrices. Local inflammatory manifestations were analyzed by morphological assay of implantation area tissues. Systemic inflammatory manifestations were estimated by TNF-a concentration and interleukin-lp (IL-1) in blood serum by ELISA. Results. The changes in cellular population content demonstrate that a PCL/CaC03-matriceonthe21 day after the implantation to rats is evenly colonizing by fibroblast cells and vascularizing. This type of matrices does not provoke intense inflammatory reaction seen in negative control animals and accompanied by systemic manifestations such as statistically significant rise in TNF-a and IL-1 concentrations. Conclusion. The data obtained in the study proving the biocompatibility of PLC/CaC03-scaffolds experimentally substantiate the potential for their use in tissue engineering.

AttachmentSize
2018_3_451-456.pdf306.1 KB

Peculiarities of microcirculatory reactions after subcutaneous implantation of polycaprolactone matrices mineralized by vaterite

Year: 2018, volume 14 Issue: №1 Pages: 35-41
Heading: Physiology and Pathophysiology Article type: Original article
Authors: Norkin I.A., Ivanov A.N., Kurtukova M.O., Savelyeva M.S., Martyukova A.V., Gorin D.A., Parakhonsky B.V.
Organization: Saratov State Medical University, Saratov state university, Skolkovo Institute of Science and Technology
Summary:

The aim is to assess skin microcirculation changes arising during subcutaneous implantation of polycaprolactone scaffolds mineralized by vaterite. Material and Methods. The experiment was carried out on 30 albino rats divided into two groups: a negative control group and an experimental one. We implanted polycaprolactone scaffold with exhausted foreign protein subcutaneously into rats of the negative control group. We implanted polycaprolactone matrix mineralized by vaterite subcutaneously into the animals of the experimental group. Research methods include laser Doppler flowmetry and morphological examination of the tissues of the matrix implantation area. Results. Changes of skin microcirculation over the matrix allocation area correspond to the morphological pattern of tissue reactions. Biocompat-ibility disorders take the form of inflammation in the scaffold implantation area that is accompanied by stable perfusion rise associated with local bloodstream modulation changes. We did not observe inflammation signs in the surrounding scaffold tissues during implantation of polycaprolactone matrices mineralized by vaterite. Besides local microcircula-tory reactions possess a transient character disappearing completely by the 21st day after the implantation. Conclusion. Complex of the given functional and morphological studies allow us to ascertain high-grade biocompatibility of polycaprolactone matrices mineralized by vaterite thus giving rise to prospect of their use for tissue regeneration stimulation.

AttachmentSize
2018_1_035-041.pdf324.92 KB