Saratov JOURNAL of Medical and Scientific Research

Application of cell technologies in thermal burn damage to skin (Practical experience in State Research Center— Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency of Russia)

Year: 2019, volume 15 Issue: №4 Pages: 999-1004
Heading: Тhematic supplement Article type: Original article
Authors: Samoilov A.S., Astrelina Т.А., Aksenenko A.V., Kobzeva I.V., Suchkova Yu.B., Nikitina V.A., Usupzhanova D.Yu., Brunchukov V.A., Brumberg V.A., Rastorgueva A.A., Makhova A.E., Karaseva T.V., Lomonosova Е.Е., Dobrovolskaya E.l., Udalov Yu.D.
Organization: Moscow Helmholtz Research Institute of Eye Diseases, State Research Center— Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
Summary:

Purpose: to present the results of the use of autologous regenerative cells of adipose tissue (AT) in treatment of patients with deep thermal burns. Material and Methods. The use of cellular technologies was carried out on 5 patients (4 men and 1 woman) aged 23-45 years, with deep thermal burns of III—IV degree of various etiology and localization, lesions from 1 % to 80%. Patients received conventional conservative therapy for burn wounds. After stabilization of the patient's general condition and positive dynamics of the local process in the wound during the planned surgical treatment of burn surfaces, the biological material of the AT was obtained. The volume of lipoaspirate AT was 195.0±74.2 ml. For clinical use of AT, the stromal-vascular fraction (SVF) of AT was obtained. The patients received intradermal injection of autologous SVF in the amount of 10 million to 50 million cells in a volume of 5 ml in 10-15 points around the damage to skin. Results. Upon examination (2.5 months after the point of introduction of SVF of AT), patients showed good cosmetic and functional results. The skin is soft, elastic, there are no rough hypertrophic and keloid scars, no contractures. Scars do not stand out. Movement in the joints is saved. Conclusion. The use of SVF AT in the early periods after injury contributed to activation of reparative processes in the dermis, which reduced the local inflammatory response, accelerated epithelialization, restoring skin elasticity with a decrease in the severity of fibrous scars and resulted in the lack of mobility in the joints.

Bibliography:
1. Alekseev AA, Tyurnikov Yul. The main statistical indicators of work of burn hospitals of the Russian Federation for 2009. In: III congress of combustiologists of Russia. Moscow, 2010; p. 4-6.
2. Alekseev AA, BobrovnikovAE, KrutikovMG.etal. Local conservative treatment of wounds at the stages of assistance to victims of burns: Clinical recommendations. Moscow, 2014; 22 p.
3. Bobrovnikov АЕ. Technology of local conservative treatment of burned: DSc diss. Moscow, 2012; 312 p.
4. Hoogewerf CJ, Van Baar ME, Hop MJ, et al. Topical treatment for facial burns. In: Cochrane Database of Systematic Reviews. New Jersey: Copyright © 2013, Published by John Wiley & Sons, Ltd, 2013; 48 p. DOI: 10.1002/14651858. cd008058. pub2.
5. European Practice Guidelines for Burn Care (Minimum Level of Burn Care Provision in Europe). Edited Brychta P, Magnette A. with contribution of other members of the Executive Committee and РАМ Committee of European Burns Association (EBA), Netherlands, 2011.
6. EvteevAA, Tyurnikov Yul, Malyutina NB, et al. Traditions and new in the use of local treatment in patients with deep burns. Electronic scientific and practical journal Combustiology. URL: http://combustiolog.ru/journal/traditsii-i-novoe-v-ispol-zovanii-sredstv-mestnogo-lecheniya-u-bol-ny-h-s-glubokimi-ozhogami/. (2006; 26)
7. Liu L, Yu Y, Hou Y, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 2014; 20 (2): e88348.
8. Liu X, Zhang G, Hou C, et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells. Biomed Res Int 2013; 2013: 854917.
9. Venugopal SS, Yan W, Frew JW, et al. A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysisbullosa. J Am Acad Dermatol 2013; 69 (6): 898-908.
10. Shved luA, Kukhareva LV, et al. Cultured skin cells interaction with polylactide surface coated by different collagen structures. Tsitologiya 2007; 49 (1): 32-9.
11. Wille JJ, Burdge JJ, Pitttelkow MR. Rapid healing of chronic venous stasis leg ulcers treated by the application of a novel serum-free cultured autologous epidermis. Wound Repair Regen 2011 Jul-Aug; 19 (4): 464-74.
12. Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning 2015; 2 (8): 149-62.
13. Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014; 40 (7): 1375-83. DOI: 10.1016/j. burns. 2014.01.023.
14. Guo J, Nguyen A, Banyard DA, et al. Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. Journal of Plastic, Reconstructive & Aesthetic Surgery 2016; 69 (2): 180-8. DOI: 10.1016/j. bjps. 2015.10.014.

AttachmentSize
2019_04-1_999-1004.pdf1.1 MB

No votes yet