Saratov JOURNAL of Medical and Scientific Research

Immunopathogenetic mechanisms of skin toxic response of antitumor therapy with mul-tikinase of angiogenesis inhibitors

Year: 2017, volume 13 Issue: №3 Pages: 605-611
Heading: Dermatovenerology Article type: Review
Authors: Shatokhina Е.А., Kruglova L.S.
Organization: Central State Medical Academy of the ADP of the Russian Federation
Summary:

The violation of the angiogenesis is associated with pathogenesis of many diseases, but especially pronounced pathological angiogenesis underlies the growth of tumors and metastasis. The physiological control of the angiogenesis is carried out by many growth factors, one main factor — the vascular endothelial growth factor (VEGF), realizing their effects by receptors — proteinkinases. The target therapy of various neoplastic diseases, based on the suppression of angiogenesis, aimed at blockade of receptors for VEGF and other pro-angiogenic growth factors. However, the medicine blockade of receptors for growth factors and suppression of tumor angiogenesis leads to inappropriate exposure are the main cells of the dermis — fibroblasts. As a result of changing the regulatory mechanisms of inhibition of the physiological renewal of epidermis, suppression of angiogenesis and repair when damaged skin there are various skin toxic reactions that are dependent on receptor targets of angiogenesis inhibitors. The study of the mechanisms of adverse events of targeted therapy is an important way of oncoimmunology and dermatology, which will further help to determine the optimal scheme of correction of dermal toxicity and maximize the effectiveness of the antitumor therapy.

Bibliography:
1. Karamysheva AF. Mekhanizmy angiogeneza. Biokhimiya 2008; (7): 935-48
2. Risau W. Mechanisms of angiogenesis. Nature 1997; 386 (6626): 671-4
3. Helker C, Schuermann A, Pollmann C, et al. The hormonal peptide elabela guides angioblasts to the midline during vasculo-genesis. eLife 2015; 4: e06726
4. Gerhardt H, Betsholtz С Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314 (1): 15-23
5. Mills S, Zhuang L, Arandjelovic P, et al. Effects of human pericytes in a murine excision model of wound healing. Experimental dermatology 2015; 24 (7): 485-8
6. Troyanovsky B, Levchenko T, Mensson G, et al. Angiomo-tin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. The Journal of Cell Biology 2001; 152(6): 1247-54.
7. Vasil'eva OV. Angiogennye faktory v kozhe cheloveka v vozrastnom aspekte: PhD diss. Cheboksary, 2015; 153 p.
8. Basilio-de-Oliveira R, Nunes Pannain V. Prognostic angio-genic markers (endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors. World Journal of Gastroenterology 2015; 21 (22): 6924-30
9. Olofsson B, Jeltsch M, Eriksson U, et al. Current biology of VEGF-B and VEGF-C. Current Opinion in Biotechnology 1999; 10 (6): 528-35
10. GavrilenkoTI.RyzhkovaNA, ParkhomenkoAN.Sosud-istyj ehndotelial'nyj faktor rosta v klinike vnutrennikh zabolevanij i ego patogeneticheskoe znachenie. UkraTns'kij kardiologich-nij zhurnal 2011; (4): 86-95
11. Stannard АК, Khurana R, Evans IM, et al. Vascular endothelial growth factor synergistically enhances induction of E-selectin by TNF-a. Arterioscler Thromb Vase Biol 2007; 27: 494-502
12. Tsutsumi Y, Losordo DW. Double face of VEGF. Circulation 2005; 112: 1248-50
13. Kaplanskaya IB, Glasko EN, Frank GA. Angiogenez, mezhkletochnye kontakty i stromal'no-parenkhimatoznye vzai-mootnosheniya v norme i patologii. Rossijskij onkologicheskij zhurnal 2005; 4: 53-7
14. Gusev NB. Proteinkinazy: stroenie, klassifikatsiya, svojstva i biologicheskaya rol'. Sorosovskij obrazovatel'nyj zhurnal 2000; 6 (12): 4-12
15. Shibuya М. Vascular endothelial growth factor recep-tor-1: a dual regulator for angiogenesis. Angiogenesis 2006; 9 (4): 225-30
16. Bergkvist M, Henricson J, Iredahl F, et al. Assessment of microcirculation of the skin using Tissue Viability Imaging: a promising technique for detecting venous stasis in the skin. Mi-crovascular Research 2015; 101: 2025
17. Thomas J, Baker K, Han J, et al. Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells. Cellular and Molecular Life Sciences 2013; 70 (10): 1779-92
18. Sorrell M, Caplan Al. Fibroblasts — a diverse population at the center of it all. Int Rev Cell Mol biol 2009; 276: 161-214
19. Zorina A, Zorin V, Cherkasov V Dermal'nye fibroblasty: raznoobrazie fenotipov i fiziologicheskikh funktsij, rol' v starenii kozhi. Esteticheskaya meditsina 2012; 11 (1): 15-31
20. Greaves N, Ashcroft A, Baguneid М, et al. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Derma-tological Science 2013; 72 (3): 206-17
21. Bozo lYa, Deev RV, Pinaev GP Fibroblast — spetsiali-zirovannaya kletka ili funktsional'noe sostoyanie kletok mezenkh-imnogo proiskhozhdeniya? Tsitologiya 2010; 52 (2): 99-109
22. Sorrel JM, Caplan Al. Fibroblast heterogeneity: more than skin deep. J Cell Sci 2004; 117: 667-75
23. Covas D, Panepuccia R, Fontes A, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular. Exp Hematol 2008; 36 (5): 642-54
24. Fu X, Sun X. Can hematopoietic stem cells be an alternative source for skin regeneration? Ageing Res Rev 2009; 8 (3): 244-9
25. Kropotov VS, Kolesov SA, Vasil'eva E, et al. Spek-tr belkov, produtsiruemyj dermal'nymi fibroblastami, u de-tej s bolezn'yu Krona. Voprosy sovremennoj pediatrii 2013; 12 (6): 120-2
26. Kane CJ, Hebda PA, Mansbridge JN, Hanawalt PC. Direct evidence for spatial and temporal regulation of transforming growth factor beta 1 expression during cutaneous wound healing. J Cell Physiol 1991; 148 (1): 157-7
. 27. Zorin VL, Zorina Al, Petrakova OS, Cherkasov VR. Dermal'nye fibroblasty dlya lecheniya defektov kozhi. Kle-tochnaya transplantologiya i tkanevaya inzheneriya 2009; 4 (4): 26-40
28. Igarashi A, Okochi Н, Bradham DM, Grotendorst GR. Regulation of connective tissue gowth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993; 4 (6): 637-45
29. Boxman I, Lu,wik C, Aarden L, Ponec M. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction. J Invest Dermatol 1993; 101 (3): 316-24
30. Marchese C, Felici A, Visco V, et al. Fibroblast growth factor 10 induces proliferation and differentiation of human primary cultured keratinocytes. J Invest Dermatol 2001; 116 (4): 623-8
31. Werner S, Beer HD, Mauch C, et al. The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Oncogene 2001; 20 (51): 7494-504
32. Blomme EA, Sugimoto Y, Lin YC, et al. Parathyroid hormone-related protein is a positive regulator of keratinocyte growth factor expression by normal dermal fibroblasts. Mol Cell Endocrinol 1999; 152(1-2): 189-97
33. Maas-Szabowski N, Shimotoyodome A, Fusenig NE. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci 1999; 112 (12): 1843-53
34. Ghalbzouri A, Lamme E, Ponec M. Crucial role of fibroblasts in regulating epidermal morphogenesis. Cell Tissue Res 2002; 310 (2): 189-99
35. Trompezinski S, Berthier-Vergnes O, Denis A, et al. Comparative expression of vascular endothelial growth factor family members, VEGF-B, — С and -D, by normal human keratinocytes and fibroblasts. Exp Dermatol 2004; 13 (2): 98-105
36. Bauer SM, Bauer RJ, Liu ZJ, et al. Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. J Vase Surg 2005; 41 (4): 699-707
37. Palmon A, Roos H, Edel J, et al. Inverse dose- and time-dependent effect of basic fibroblast growth factor on the gene expression of collagen type I and matrix metalloprotein-ase-1 by periodontal ligament cells in culture. J Periodontol 2000; 71 (6): 974-80
38. Sorrell JM, Baber MA, Caplan Al. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J Cell Physiol 2004; 200 (1): 134-45
39. Ali-Bahar M, Bauer B, Tredget ЕЕ, et al. Dermal fibroblasts from different layers of human skin are heterogeneous in expression of collagenase and types I and III procollagen mRNA. Wound Repair Regen 2004; 12 (2): 175-82
40. Chang HY, Chi JT, Dudoit S, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 2002; 99 (20): 12877-82
41. Rinn JL, Bondre C, Gladstone HB, et al. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLOS Genet 2006; 2 (7): 119
42. Okazaki M, Yoshimura K, Suzuki Y, et al. Effects of subepithelial fibroblasts on epithelial differentiation in human skin and oral mucosa: heterotypically recombined organotypic culture model. Plast Reconstr Surg 2003; 112 (3): 784-92
43. Bridges E, Harris A. The angiogenic process as a therapeutic target in cancer. Biochemical pharmacology 2011; 81 (10): 1183-91
44. Rosca E, Koskimaki J, Rivera C, et al. Anti-angiogenic peptides for cancer therapeutics. Current pharmaceutical biotechnology 2011; 12(8): 1101-16
45. Busaidy NL, Cabanillas ME. Differentiated thyroid cancer: management of patients with radioiodine nonresponsive disease. J Thyroid Res Volume 2012, Article ID 618985, 12 pages
46. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892-9
47. Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014; 2: 356-8
48. Boussemart L, Routier E, Mateus C, et al. Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol 2013; 24 (6): 1691-7
49. Huang V, Hepper D, Anadkat M, et al. Cutaneous toxic effects associated with vemurafenib and inhibition of the BRAF pathway. Arch Dermatol 2012; 148 (5): 628-33
50. Hey F, Pritchard О A new mode of RAF autoregulation: a further complication in the inhibitor paradox. Cancer Cell 2013; 23 (5): 561-3
51. Zejfman AA, Chelysheva EYu, Turkina AG, Chilov GG. Rol' selektivnosti ingibitorov tirozinkinaz v razvitii pobochnykh ehffektov pri terapii khronicheskogo mielolejkoza. Klinicheska-ya onkogematologiya: Fundamental'nye issledovaniya i klinich-eskaya praktika 2014; 7 (1): 16-27
52. Schlumberger М, Tahara М, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372: 621-30
53. Instruktsiya po primeneniyu lekarstvennogo preparata dlya meditsinskogo primeneniya Lenvima. LP №003398 ot 30.09.16
54. Motzer RJ, Hutson ТЕ, Glen H, et al. Lenvatinib, ever-olimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015; 16 (15): 1473-82
55. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 2009; 6 (8): 465-77
56. Instrukcija po primeneniju lekarstvennogo preparata dlja medicinskogo primenenija NEKSAVAR. LRS-000093 ot 19.03.2014
57. Instrukcija po primeneniju lekarstvennogo preparata dlja medicinskogo primenenija SUTENT LSR-002516/07 ot 31.08.2007
58. Hutson Th, Lesovoy V, Al-Shukri S, et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol 2013; 14: 1287-94
59. Chu D, Fillos T, Wu S. Risk of hand-foot skin reaction with sorafenib: A systematic review and meta-analysis. Acta On-cologica 2008; 47: 176-86
60. Robert C, Mateus C, Spatz A, Wechsler J, Escudi-er B. Dermatologic symptoms associated with the multikinasein-hibitor sorafenib. J Am Acad Dermatol 2009; 60: 299-305
61. Lacouture ME, Wu S, Robert C, et al. Evolving strategies for the management of hand-foot skin reaction associated with the multitargeted kinase inhibitors sorafenib and sunitinib. Oncologist 2008; 13: 1001-11
62. Robert C, Soria JC, Spatz A, et al. Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol 2005;6:491-500.

AttachmentSize
2017_03-1_605-611.pdf321.89 KB

No votes yet