Saratov JOURNAL of Medical and Scientific Research

The question of a 'New Era in the Low Dose Radiation Epidemiology' approach

Year: 2016, volume 12 Issue: №4 Pages: 654-662
Heading: radiation medicine Article type: Review
Authors: Koterov A.N., Ushenkova L.N., Biryukov А.Р., Samoilov A.S.
Organization: State Scientific Research Center n.a. A.I. Burnasyan — Federal Medical Biophysical Center of Federal Medical Biological Agency

The historical and recent years data on cancer and/or leukemia rate increasing after exposure of people in low dose (up to 100 mGy) radiation with a low LET, attributiveness of effects and the possibility of their experimental confirmation were considered. Previously, information about the carcinogenic effects of low doses was not clearly interpreted due to the presence of uncertainty, biases and confounders. The biological mechanism was also absent. In the last 5-7 years the situation has changed dramatically: more significant data were obtained: irradiation at computed tomography in dentistry, for residents of a high natural background radiation, and others. Simultaneously it was obtained radiobio-logical data on increased DNA double strand breaks level after exposure to doses from few milligrays and it can be considered as a possible molecular mechanism of these effects. As a result, was declared 'New Era in the Low Dose Radiation Epidemiology' (Kitahara С M., et al., 2015), which can lead to costs in terms of tightening of radiation risks and to fear of medical exposure. The conducted in the review analysis of recent epidemiological and radiobiological evidence suggests, however, that there is no unambiguous evidence of attributed to radiation carcinogenic effects, identified during the 'New Epidemiology of Low Doses', and there is no a proven molecular mechanism that could provide biological plausibility of such effects.

1. UNSCEAR 1964: Report to the General Assembly, with Scientific Annex. Annex B: Radiation carcinogenesis in man. New York, 1964; p. 81-110
2. UNSCEAR 2008: Report to the General Assembly, with Scientific Annex. Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations, 2011; p. 47-219
3. UNSCEAR 2010: Report to the General Assembly, with Scientific Annex. Volume I, Annex A: Medical radiation exposures. New York: United Nations, 2010; p. 23-220
4. UNSCEAR 2006: Report to the General Assembly, with Scientific Annexes. Annex A: Epidemiological studies of radiation and cancer. New York: United Nations, 2008; p. 17-322
5. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam; New York: Elsevier, 2007; 329 p.
6. BEIR VII Report 2006. Phase 2: Health Risks from Exposure to Low Levels of Ionizing Radiation / Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation; National Research Council, catalog/11340.html (6 December 2016)
7. IARC International Agency for Research on Cancer: IARC monographs on the evaluation of carcinogenic risks to humans: Preamble. Lyon, France, 2006; 27 p.
8. UNSCEAR 2001: Report to the General Assembly, with Scientific Annexes. Annex: Hereditary effects of radiation. New York: United Nations, 2001; p. 5-160
9. Koterov AN. From very low to very large doses of radiation: new data on ranges definition and its experimental and epidemiological basing. Medical Radiology and Radiation Safety 2013; 58 (2): 5-21
10. UNSCEAR 2012: Report to the General Assembly, with Scientific Annex. Annex B: Uncertainties in risk estimates for radiation-induced cancer. New York, 2014; 219 p.
11. Yarmonenko SP, Wainson AA. Radiobiology of humans and animals. Moscow: Vysshaya shkola, 2004; 549 p.
12. Dauer LT, Brooks AL, Hoel DG, et al. Review and evaluation of updated researches on the health effects associated with low-dose ionizing radiation. Radiat Prot Dosim 2010; 140 (2): 103-136
13. Webster EW. Garland lecture. On the question of cancer induction by small X-ray doses. Am J Roentgenol 1981; 137 (4): 647-666
14. UNSCEAR 2012: Report to the General Assembly, with Scientific Annexes. Annex A: Attributing health effects to ionizing radiation exposure and inferring risks. New York: United Nations, 2015; 86 p.
15. Giles D, Hewitt D, Stewart A, Webb J. Malignant disease in childhood and diagnostic irradiation in utero. Lancet 1956; 271 (6940): 447
16. Stewart AM, Webb KW, Hewitt D. A survey of childhood malignancies. BrMed J 1958; 30 (5086): 1495-1508
17. Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol 1997; 70: 130-139
18. Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 1995; 141 (3): 259-277
19. De Vathaire F, Hardiman C, Shamsaldin A, et al. Thyroid carcinomas after irradiation for a first cancer during childhood. Arch Intern Med 1999; 159 (22): 2713-2719
20. Hallquist A, Hardell L, Degerman A, et al. Medical diagnostic and therapeutic ionizing radiation and the risk for thyroid cancer: a case-control study. Eur J Cancer Prev 1994; 3 (3): 259-267
21. Hallquist A, Nasman A. Medical diagnostic X-ray radiation — an evaluation from medical records and dentist cards in a case-control study of thyroid cancer in the northern medical region of Sweden. Eur J Cancer Prev 2001; 10 (2): 147-152
22. Hallquist A, Jansson P. Self-reported diagnostic X-ray investigation and data from medical records in case-control studies on thyroid cancer: evidence of recall bias? Eur J Cancer Prev 2005; 14 (3): 271-276
23. Wngren G, Hallquist A, Hardell L. Diagnostic X-ray exposure and female papillary thyroid cancer: a pooled analysis of two Swedish studies. Eur J Cancer Prev 1997; 6 (6): 550-556
24. Preston-Martin S, Paganini-Hill A, Henderson BE, et al. Case-control study of intracranial meningiomas in women in Los Angeles County, California. J Natl Cancer Inst 1980; 65 (1): 67-73
25. Preston-Martin S, Henderson BE, Bernstein L. Medical and dental x rays as risk factors for recently diagnosed tumors of the head. Natl Cancer Inst Monogr 1985; 69: 175-179
26. Preston-Martin S, White SO Brain and salivary gland tumors related to prior dental radiography: implications for current practice. J Am Dent Assoc 1990; 120 (2): 151-158
27. Ryan P, Lee MW, North B, McMichaelAJ. Risk factors for tumors of the brain and meninges: results from the Adelaide Adult Brain Tumor Study. Int J Cancer 1992; 51 (1): 20-27
28. Doody MM, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 2000; 25 (16): 2052-2063
29. Jacob P, Kenigsberg Y, Zvonova I, et al. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br J Cancer 1999; 80(9): 1461-1469
30. Jacob P, Bogdanova T, Buglova E, et al. Thyroid cancer among Ukrainians and Belarusians who were children or adolescents at the time of the Chernobyl accident. J Radiol Prot 2006; 26(1): 51-67
31. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Re. 2000; 154 (2): 178-186
32. Preston DL, Pierce DA, Shimizu Y, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 2004; 162 (4): 377-389
33. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 2007; 168(1): 1-64
34. CardisE, Vrijheid M, BlettnerM, etal. Risk of cancer after low doses of ionizing radiation: retrospective cohort study in 15 countries. Brit Med J 2005; 331 (7508): 77
35. Cardis E, Vrijheid M, Blettner M, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 2007; 167 (4): 396-416
36. Vrijheid M, Cardis E, Ashmore P, et al. Ionizing radiation and risk of chronic lymphocytic leukemia in the 15-country study of nuclear industry workers. Radiat Res 2008; 170 (5): 661 -665
37. Wng S, Shy C, Wood J, et al. Mortality among workers at Oak Ridge National Laboratory. Evidence of radiation effects in follow-up through 1984. J Amer Med Assoc 1991; 265 (11): 1397-1402
38. Carroll RJ. Thyroid cancer after scalp irradiation: a reanalysis accounting for uncertainty in dosimetry. Radiat Res 2000; 154 (6): 721-722
39. ICRP Publication 99: Low-dose Extrapolation of Radiation-related Cancer Risk. Annals of the ICRP. Ed. by J. Valentin. Amsterdam; New-York: Elsevier, 2006. 147 p.
40. UNSCEAR 2013: Report to the General Assembly, with Scientific Annex. Vol. II, Annex B: Effects of radiation exposure of children. New York, 2013; p. 1-268
41. Bradford Hill A. The environment and disease: association or causation? Proc R Soc Med 1965; 58: 295-300
42. Rothman KJ. Causes. Am J Epidemiol 1976; 104 (6): 587-592
43. Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health 2005; 95 (Suppl 1):S144-S150
44. Parascandola M, Weed D. Causation in epidemiology. J Epidemiol Community Health 2001; 55 (12): 905-912
45. Susser M. What is a cause and how do we know one? A grammar for pragmatic epidemiology. Am J Epidemiol 1991; 133 (7): 635-648
46. Koterov AN. History of the conception of genomic instability at low dose of radiation. The scientific point, probably is put. Medical Radiology and Radiation Safety 2014; 59 (1): 5-19
47. Koterov AN. New facts in favor of the absence of genomic instability induced by low doses of low LET radiation and conclusions about the threshold effect reported in the UNSCEAR-2012 recommendations. Radiats Biol Radioecol 2014; 54 (3): 309-312
48. Kitahara CM, Linet MS, Rajaraman Р, et al. A New Era of Low-Dose Radiation Epidemiology. Curr Environ Health Rep 2015; 2(3): 236-249
49. Koterov AN, Ushenkova LN, BiryukovAP. Gene markers of radiogenic thyroid cancer: relevance search and present state of problem. Radiats Biol Radioecol 2015; 55 (2): 117-135
50. Koterov AN, Ushenkova LN, Biryukov АР Specific complex of non-radiation risk factors for socially significant pathologies could affect the liquidators of Chernobyl nuclear power plant accident. Saratov Journal of Medical Scientific Research 2014; 10 (4): 782-796
51. Planel Н, Soleillhavoup JP, Tixador R, et al. Influence on cell proliferation of background radiation or exposure to very low chronic gamma radiation. Health Phys 1987; 52 (5): 571-578
52. Kuzin AM The ideas of radiation hormesis in the atomic age. M.: Nauka, 1995; 158 p.
53. Nair RR, Rajan В, Akiba S, et al. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys 2009; 96 (1): 55-66
54. Tao Z, Akiba S, Zha Y, et al. Cancer and non-cancer mortality among inhabitants in the high background radiation area of Yangjiang, China (1979-1998). Health Phys 2012; 102 (2): 173-181
55. Kendall GM, Little MP, Wakeford R, et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980-2006. Leukemia 2013; 27 (1): 3-9
56. Koterov AN. Genomic instability at exposure of low dose radiation with low LET. Mythical mechanism of unproved carcinogenic effects. Int J Low Radiation 2005; 1 (4): 376-451
57. Memon A, Godward S, Wlliams D, et al. Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncol 2010; 49 (4): 447-453
58. Claus EB., Calvocoressi L, Bondy M, et al. Dental x-rays and risk of meningioma. Cancer 2012; 18 (18): 4530-4537
59. Lin MC, Lee CF, Lin CL, et al. Dental diagnostic X-ray exposure and risk of benign and malignant brain tumors. Ann Oncol 2013; 24 (6): 1675-1679
60. Seifert H, Blass G, Leetz HK, Voges M. The radiation exposure of the patient from stable-xenon computed tomography. Br J Radiol 1995; 68 (807): 301-305
61. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380 (9840): 499-505
62. Mathews JD Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Brit Med J 2013; 346: f2360
63. Huang WY, MuoCH, LinCY, etal. Pediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. Br J Cancer 2014; 110 (9): 2354-2360
64. Meulepas JM, Ronckers CM, Smets AM, et al. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study. Eur J Epidemiol 2014; 29 (4): 293-301
65. White IK, Shaikh KA, Moore RJ, et al. Risk of radiation-induced malignancies from CT scanning in children who underwent shunt treatment before 6 years of age: a retrospective cohort study with a minimum 10-year follow-up. J Neurosurg Pediatr2014; 13 (5): 514-519
66. Krille L, Dreger S, Schindel R, et al. Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys 2015; 54 (1): 1 -12
67. Journy N, Rehel JL, Ducou Le Pointe H, et al. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. Br J Cancer 2015; 112 (1): 185-193
68. Berrington de Gonzalez A, Salotti JA, McHugh K, et al. Relationship between pediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. Br J Cancer 2016; 114 (4): 388-394
69. Yuan MK, Tsai DC, Chang SC, et al. The risk of cataract associated with repeated head and neck CT studies: a nationwide population-based study. AJR Am J Rentgenol 2013; 201 (3): 626-630
70. Gage SH, MunafT MR, Davey Smith G. Causal Inference in Developmental Origins of Health and Disease (DOHaD) Research. Annu Rev Psychol 2016; 67: 567-585
71. Boice JD, Jr. Radiation epidemiology and recent pediatric computed tomography studies. Ann ICRP 2015; 44 (1, Suppl): 236-248
72. Sutherland BM, Bennett PV, Sutherland JC, Laval J. Clustered DNA damages induced by x-rays in human cells. Radiat Res 2002; 157 (6): 611-616
73. Rogakou EP, Pilch DR, Orr AH, et al. DNA Double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273 (10): 5858-5868
74. Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose v-irradiation. Nucleic Acids Research 2009; 37 (12): 3912-3923
75. Neumaier T, Swenson J, Pham Ch, et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci USA 2012; 109 (2): 443-448
76. Rothkamm K, Lobrich M. Evidence for lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 2003; 100 (9): 5057-5062
77. Baure J, Izadi A, Suarez V, et al. Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis 2009; 24 (2): 161-167
78. De Feraudy S, Revet I, Bezrookove V, et al. A minority of foci or pan-nuclear apoptotic staining of yH2AX in the S phase after UV damage contain DNA double-strand breaks. Proc Natl Acad Sci USA 2010; 107 (15): 6870-6875
79. Schanz S, Schuler N, Lorat Y,et al. Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation. DNA Repair (Amst) 2012; 11 (10): 823-832
80. Rube CE, Dong X, Kbhne M, et al. DNA double-strand break rejoining in complex normal tissues. Int J Radiat Oncol Biol Phys 2008; 72 (4): 1180-1187
81. Rothkamm K, Balroop S, Shekhdar J, et al. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 2007; 242 (1): 244-251
82. Grudzenski S, Raths A, Conrad S, et al. Inducible response required for repair of low-dose radiation damage in human fibroblasts. Proc Natl Acad Sci USA 2010; 107 (32): 14205-1410
83. Vasil'ev SA, Stepanova EYu, Kutenkov OP, et al. DNA double-strand breaks in human lymphocytes after single irradiation by low doses of pulsed x-rays: non-linear dose-response relationship. Radiats Biol Radioecol 2012; 52 (1): 31-38
84. GazievAI. Low efficiency of repair of critical DNA damage induced by low doses of radiation. Radiats Biol Radioecol 2011; 51 (5): 512-529
85. Beels L, Werbrouck J, Thierens H. Dose response and repair kinetics of gamma-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and gamma-radiation. Int J Radiat Biol 2010; 86 (9): 760-768
86. Su Y, Meador JA, Geard CR, Balajee AS. Analysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system. Exp Dermatol 2010; 19 (8):e16-e22
87. Martin CJ, Sutton DG, West CM, Wright EG. The radiobiology / radiation protection interface in healthcare. J Radiol Prot 2009; 29 (2A): A1-A20
88. Preston RJ. Integrating basic radiobiological science and epidemiological studies: why and how. Health Phys 2015; 108 (2): 125-130
89. Ronckers CM, Sigurdson AJ, Stovall M, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res 2006; 166 (4): 618-628
90. Osipov AN, Grekhova A, Pustovalova M, et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget 2015; 6 (29): 26876-26885
91. Osipov AN, Pustovalova M, Grekhova A, et al. Low doses of X-rays induce prolonged and ATM-independent persistence of yH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2015; 6 (29): 27275-27287.

2016_04-1_654-662.pdf341.77 KB

No votes yet