Saratov JOURNAL of Medical and Scientific Research

Background of photon-capture therapy principle of malignant cancer treatment

Year: 2013, volume 9 Issue: №4 Pages: 878-881
Heading: Oncology Article type: Original article
Authors: Sheino I.N., Izhevskij P. W., Lipengolts A.A.
Organization: State Scientific Research Center n.a. A.I. Burnasyan — Federal Medical Biophysical Center of Federal Medical Biological Agency
Summary:

Aim: the study of the physical effect of the local dose increasing in biological tissue at the gadolinium-containing drug under the influence of X-ray radiation. Material and Methods. Experimental and three independent numerical methods are obtained distribution of the absorbed dose in tissue-equivalent phantom containing a model of the tumor with a given concentration of gadolinium. Results. The presence of a gadolinium-containing drug in the biological tissue (1% Gd by weight) leads to a local increase of an absorbed dose up to 2 times under the influence of X-ray radiation. The difference in the results obtained calculated and experimental methods does not exceed 12%. Conclusion. The results of the study confirmed the basic theoretical background photon capture therapy, as well as the legal use of methods of mathematic modeling of the process of forming radiation in biological tissue, necessary for dosimetric photon capture therapy planning.

Bibliography:
1. Sposob foton-zahvatnoj terapii opuholej: pat. 2270045 (RF) / V.F. Hohlov, V.N. Kulakov, I.N. Shejno, ТА. Nasonova, VN. Mitin, O.A. Dobrynina. 20.02.2006; 2. Sheino I. N. Dose-supplementary therapy of malignant tumors // Proceedings of ICNCT-12 / ed. by Y. Nakagawa, T. Kobayashi and H. Fukuda. [12th International Congress on Neutron Capture Therapy. October 9-13, 2006, Kagawa Japan]. P. 531-534; 3. X-5 Monte Carlo Team//MCNP —A General Monte Carlo N-Particle Transport Code, Version 5. Vol. I: Overview and Theory. LA-UR-03-1987, Los Alamos National Lab. (April 2003); 4. Kawrakow I., Rogers D.W. O. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. National Research Council of Canada, PIRS-701, 2003; 5. Nikolaeva O.V, Germogenova ТА., Bass L. P., Kuznetsov VS. The Discrete Ordinate Methods development to the Transport Equation solving // The 3D code Raduga-5.1 and multiprocessors computers: Proc. of the 19-th International Conference on Transport Theory. (19th ICTT). Budapest, 2005. P. 115; 6. Shchegolkov I.V., Sheino I.N., Molin A.A. Semiempirical Model of X-ray Tube Facility // Nuclear Physics Methods and Accelerators in Biology and Medicine: AIP Conference Proceedings 1204. N.Y.,2009. P. 188-191; 7. Shhegol'kov I. V, Shejno I.N., Hohlov V.F., Lipengol'c A.A. Modelirovanie raspredelenij pogloshhennoj dozy metodom Monte-Karlo v tehnologii foton-zahvatnoj terapii // Medicinskaja fizika. 2010. №4. S. 12-16; 8. Calibration Method For GAFCHROMIC R XR-R / International Specialty Products. NJ, 2007. 25 p.; 9. AAPM protocol for 40-300 kV X-ray beam dosimetry in radiotherapy and radiobiology / C.-M. Chair, C.W. Ma Coffey L.A. DeWerd [et. al.] // Med. Phys. 2001. Vol. 28, № 6. P. 868-893; 10. Ispol'zovanie gadolinij-soderzhashhego preparata dlja povyshenija jeffektivnosti rentgenovskogo obluchenija pri lech-enii jeksperimentarnyh opuholej / N.G. Darenskaja, O.A. Dobrynina, ТА. Nasonova [i dr.] // Medicinskaja radiologija. 2006. T 51, №4. S. 5-11.

AttachmentSize
2013_04-01_878-881.pdf664.95 KB

No votes yet