Saratov JOURNAL of Medical and Scientific Research

Laser thermal therapy is increasingly being used in clinical practice for cancer treatment. Its major limitation is associated with low spatial selectivity. This restriction may be excluded by the use of plasmon-resonant gold nanoparticles as photothermal

Year: 2013, volume 9 Issue: №4 Pages: 700-706
Heading: Oncology Article type: Review
Authors: Chumakov D.S., Basko M.V., Dikht N.I., Bucharskaya A.B., Rodionova Т.I., Terentyuk G.S.
Organization: Saratov State Medical University, Saratov state university
Summary:

Laser thermal therapy is increasingly being used in clinical practice for cancer treatment. Its major limitation is associated with low spatial selectivity. This restriction may be excluded by the use of plasmon-resonant gold nanoparticles as photothermal sensitizers. Tunable synthesis, unique optical properties and low toxicity make gold nanostructures promising as a therapeutic agent for cancer treatment. The research work has presented the experimental data that concern the use of plasmon photothermal therapy for the treatment of transplanted and induced tumors of laboratory animals. Taking into consideration the research results it is determined that the transition of this therapeutic technology into the clinical practice can be predicted.

Bibliography:
1. Thermal therapy. Part 3: Ablation / R. Habash [et al.] // Critical Rev. Biomed. Eng. 2007. № 1. P. 37-121; 2. Elbialy N., Abdelhamid M., Youssef T. Low power argon laser-induced thermal therapy for subcutaneous Ehrlich carcinoma in mice using spherical gold nanoparticles // J. Biomed. Nano-technol. 2010. № 6. P. 687-693; 3. Therapeutic efficacy of plasmonic photothermal nanoparticles in hamster buccal pouch carcinoma / M.M. Afifi [et al.] // Oral. Surg. Oral.Med. Oral. Pathol. Oral. Radiol. 2013. № 6. P. 743-751; 4. Tunable plasmonic nanobubbles for cell theranostics / E.Y. Lukianova-Hleb [et al.] // Nanotechnology. 2010. № 8. P. 085102. 5. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance / L. R. Hirsh [et al.] // Proc. Natl. Acad.Sci. U. S.A. 2003. № 23. P. 13549-135554; 6. Nanoshell enabled photonics-based imaging and therapy of cancer/ S. Loo [et al.] //Techno. Cancer Res. Treat. 2004. № 3. P. 33-40; 7. Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: computer simulations and experiment / I.L. Maksimova [et al.] // Med. Laser Appl. 2007. № 22. P. 199-206; 8. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods / X. Huang [et al.] // J. Amer. Chem. Soc. 2006. № 128. P. 2115-2120; 9. Hyperthermic effects of gold nanorods on tumor cells / ТВ. Huff [etal.]//Nanomedicine. 2007. №2. P. 125-132; 10. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice / E. B. Dickerson [et al.] // Cancer Lett. 2008. № 1. P. 57-66; 11. Immunogold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells/J. Chen [et al.] // Nano Lett. 2007. № 5. P. 1318-1322; 12. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars / H. Yuan [et al.] // Nano-medicine. 2012. № 8. P. 1355-1363; 13. Lee K. S., El-Sayed M.A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index // J. Phys. Chem. B. 2005. № 43. P. 20331-20338; 14. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters / B. N. Khlebtsov [et al.] // Nanotechnology. 2006. № 17. P. 5167-5179; 15. Application of gold nanoparticles to X-ray diagnostics and photothermal therapy of cancer / G. S. Terentyuk [et al.] // Proc. SPIE. Saratov Fall Meeting. 2006. P. 653; 16. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy / G. S. Terentyuk [et al.] // J. Biomed. Opt. 2009. № 2. P. 021016; 17. Plasmonic photothermal therapy (PPTT) using gold nanoparticles / X. Huang [et al.] // Lasers Med.Sci. 2008. № 3. P. 217-228; 18. Nanoengineering of optical resonances / S. Oldenburg [et al.] // Chem. Phys. Lett. 1998. Vol. 288. P. 243-247; 19. Optimization of plasmonic heating by gold nano-spheres and nanoshells / N. Harris [et al.] // J. Phys. Chem. B. 2006. №22. P. 10701-10707; 20. Hlebcov N.G. Optika i biofotonika nanochastic s pla-zmonnym rezonansom // Kvantovaja jelektronika. 2008. № 6. S. 504-529; 21. Greisch K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for target- ed anticancer nanomedicines // J. Drug. Target. 2007. № 7-8. P. 457-464; 22. Analiz nakoplenija i bioraspredelenija zolotyh nanchas-tic v mezenterial'nyh limfaticheskih uzlah pri peroral'nom vve-denii / O.V. Zlobina [i soavt.] // Saratovskij nauchno-medicinskij zhurnal. 2013. № 3. S. 17-20; 23. Pharmacokinetic study of PEGylated plasmon resonant gold nanoparticles in tumor-bearing mice / B. Kogan [et al.] // Tech. Proc. NSTI Nanotechnol. Conf. Trade. Show. 2008. Vol. 2. P. 65-68; 24. Glomm W. R. Functionalized gold nanoparticles for application in biotechnology // J. Dispers. Sci. Technol. 2005. Vol.26. P. 389-414; 25. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy / P. Diagaradjane [et al.] // Nano Lett. 2008. № 5. P. 1492-1500; 26. Leeper D. B. Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities // Hyperthermic oncology / ed. by J. Overgaard. London: Taylor and Francis, 1984. P. 9-40; 27. Dickson J.A., Calderwood S. K. Thermosensivity of neoplastic tissues in vivo // Hyperthermia in cancer therapy / ed. by F. K. Storm. Boston: Hall medical publishers, 1983. P. 63-140; 28. Streffer С Mechanism of heat injury // Hyperthermic oncology / ed. by J. Overgaard. London: Taylor and Francis, 1984. P. 213-222; 29. Hyperthermia, Na+K+ATPase and lactic acid production in some human tumour cells / R.H. Burdon [et al.] // Br. J. Cancer. 1984. № 4. P. 437-445; 30. Calderwood S. K., Hahn G. N. Thermal sensitivity and resistance of insulin-receptor binding in thermotolerant cells // Biochem. Biophys. Acta. 1983. № 1. P. 76-82; 31. Fuhr J. E. Effect of hyperthermia on protein biosynthesis in L5178Y murine leukemic lymphoblasts // J. Cell Physiol. 1974. №3. P. 365-372; 32. The effects of hyperthermia on cellular macromole-cules / J.L. Roti [et al.] // Hyperthermia and oncology / ed. by M. Urano. Utrecht: VSP, 1988. P. 13-56; 33. The role of apoptosis in the response of cells and tumours to mild hyperthermia / B. V Harmon [et al.] // Int. J. Radiat. Biol. 1991. №2. P. 489-501; 34. Evaluation of the effect on normal liver of interstitial laser hyperthermia using artificial sapphire probes/ H.M. Sweet-land [et al.] // Lasers Med. Sci. 1993. № 8. P. 99-105; 35. Vogel A.M., Venugopalan V Mechanisms of pulsed laser ablation of biological tissues // Chem. Rev. 2003. № 2. P. 577-644; 36. Plasmonic nanobubbles rapidly detect and destroy drug-resistant tumors / E.Y. Lukianova-Hleb [et al.] // Theranostics. 2012. №10. P. 976-987; 37. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles // D. P. O'Neal [et al.] // Cancer lett. 2004. №2. P. 171-176; 38. Integrin bvvMargeted gold nanoshells augment tumor vasculature — specific imaging and therapy / H. Xie [et al.] // Int. J. Nanomedicine. 2011. № 6. P. 259-269; 39. Model feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine / J.A. Schwartz [et al.] // Cancer Res. 2009. № 4. P. 1659-1667; 40. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas / G. Von Maltzahn [et al.] // Cancer Res. 2009. № 9. P. 3892-3900; 41. Fototermicheskie jeffekty pri lazernom nagreve zolotyh nanosterzhnej v suspenzijah i v privityh opuholjah v jeksperimen-tah in vivo / G. S. Terentjuk [i dr.] // Kvantovaja jelektronika. 2012. № 6. С 380-389; 42. Gold nanocages as photothermal transducers for cancer treatment / J. Chen [et al.] // Small. 2010. №7. P. 811-817; 43. Genfol'd M. L, BarchukA.S. Lazernaja selektivnaja gipertermija v lechenii zlokachestvennyh novoobrazovanij. SPb., 2002. 13 c.; 44. http://www.nanospectra.com/patients/trialinfo.html 30.06.2013.

AttachmentSize
2013-04_700-706.pdf364.14 KB

No votes yet