Саратовский научно-медицинский ЖУРНАЛ

Композитные наноматериалы на основе магнитных наночастиц для применения в тераностике

Год: 2019, том 15 Номер: №2 Страницы: 368-371
Рубрика: Физиология и патофизиология Тип статьи: Обзор
Авторы: Бучарская А.Б.
Организация: ФГБОУ ВО Саратовский ГМУ им. В.И. Разумовского Минздрава России

Обзор литературы посвящен применению композитных наноматериалов на основе магнитных наночастиц для диагностики и лечения различных заболеваний.

1 Fan W, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy. Chemical Reviews 2017; 117 (22): 13566–638
2 Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater 2017; 6 (23): 1700306
3 Frimpong RA, Hilt JZ. Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine (Lond) 2010; 5 (9): 1401–14
4 Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C Mater Biol Appl 2017; 79: 901–16
5 Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 2012; 7 (9): 1443–59
6 Wei W, Zhaohui W, Taekyung Y, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015; 16 (2): 23501
7 Zhu L, Zhou Z, Mao H, et al. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2017; 12 (1): 73–87
8 Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modifcation and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63: 24–46
9 Wang YX. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg 2011; 1 (1): 35–40
10 Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J 2011; 6: 1342–7
11 Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 2015; 468 (3): 463–70
12 Oh Y, Moorthy MS, Manivasagan P, et al. Magnetic hyperthermia and pH-responsive efective drug delivery to the sub-cellular level of human breast cancer cells by modifed CoFe2O4 nanoparticles. Biochimie 2017; 133: 7–19
13 Soenen SJ, Velde GV, Ketkar-Atre A, et al. Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011; 3 (2): 197–211
14 Rümenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res 2012; 29: 1165–79
15 Wu W, Wu Z, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015; 16 (2): 23501
16 Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater 2009;.21: 2133–48
17 German SV, Bratashov DN, Navolokin NA, et al. In vitro and in vivo MRI visualization of nanocomposite biodegradable microcapsules with tunable contrast. Phys Chem Chem Phys 2016; 18: 32238–46
18 Winter A, Kowald T, Paulo TS, et al. Magnetic resonance sentinel lymph node imaging and magnetometer- guided intraoperative detection in prostate cancer using superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018; 13: 6689–98
19 Alam SR, Shah AS, Richards J, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging 2012; 5 (5): 559–65
20 URL: https://www.mr-tip.com /
21 Jin R, Lin B, Li D, et al. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opinion in Pharmacology 2014; 18: 18–27
22 Naumenko V, Garanina A, Nikitin A. Biodistribution and tumors MRI contrast enhancement of magnetic nanocubes, nanoclusters, and nanorods in multiple mice models. Contrast Media & Molecular Imaging 2018; 2018: Article ID 8264208
23 Issa B, Obaidat IM, Albiss BA. Magnetic Nanoparticles: Surface Efects and Properties Related to BiomedicineApplications. IJMS 2013; 14 (11): 21266–305
24 Chamorro S, Gutierrez L, Vaquero M P, et al. Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology 2015; 26: 205101
25 Patel S, Jana S, Chetty R, et al. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem Toxicol 2017; 27: 1–8
26 Wei Y, Zhao M, Yang F, et al. Iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment. Sci Rep 2016; 6: 29110
27 Яушева Е. В., Мирошников С. А., Сизова Е. А. и др. Исследование биологического действия наночастиц металлов. Вопросы биологической, медицинской и фармацевтической химии 2013; 9: 54–60
28 Скоркина М. Ю., Федорова М. З., Сладкова Е. А., Деркачев Р. В., Забиняков Н. А. Влияние наночастиц железа на дыхательную функцию крови. Ярославский педагогический вестник 2010; 3: 75–9
29 Zhu M-T, Feng WY, Wang B, et al. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 2008; 247 (2-3): 102–111
30 Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International 2013; 2013: Article ID 942916
31 Yarjanli Z, Ghaedi K, Esmaeili A, et al. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 2017; 18: 51
32 Aillon KL, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? Journal of Nanoparticle Research 2010; 12 (7): 2313–33
33 Kim JS, Yoon TJ, Yu K. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006; 89 (1): 338–47
34 Zhu MT, Feng WY, Wang B, et al. Comparative study of pulmonary responses to nano- and submicronsized ferric oxide in rats. Toxicology 2008; 247 (2-3): 102–111
35 Wang B, Feng W, Zhu M. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron- sized ferric oxide particles in mice. Nanopart Res J 2008; 11 (1): 41–53
36 Barrera C, Herrera A, Zayas Y, et al. Surface modifcation magnetite nanoparticles for biomedical applications. Magnetism and Magnetic Materials 2009; 321: 1397–9
37 Hong J, Gong P, Xu D, et al. Stabilization of chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel. J of Biotechnology 2007; 128: 597– 605
38 Yu J, Lee C-W, Im S-S, et al. Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process. Rev Adv Mater Sci 2003; 4: 55
39 Carroll MRJ, Hufstetler P P, Miles WC, et al. The efect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles. Nanotechnology 2011; 22: 325702
40 Navolokin NA, German SV, Godage OS, et al. Systemic Administration of Polyelectrolyte Microcapsules: Where Do They Accumulate and When? In Vivo and Ex Vivo Study. Nanomaterials 2018; 8 (10): E812
41 Soenen SJ, Hodenius M, De Cuyper M. Magnetoliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine (Lond) 2009; 4: 177–91
42 Margolis LB, Namiol VA, Kljukin LM. Magnetoliposomes: another principle of cell sorting. Biochim Biophys Acta 1983; 735: 193–5
43 Tarahovsky YS. Smart liposomal nanocontainers in biology and medicine biochemistry. Biochemistry 2010; 75: 811–24
44 German SV, Inozemtseva OA, Anis'kov AA, et al. Liposomes loaded with hydrophilic magnetite nanoparticles: preparation and application as contrast agents for magnetic resonance imaging. Colloids and Surfaces B: Biointerfaces 2015; 135: 109–15
45 Terreno E, Delli CD, Cabella C, et al. Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications. Chem Biodivers 2008; 5: 1901–12
46 Shido Y, Nishida Y, Suzuki Y, et al. Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic feld in a mouse osteosarcoma model. J Bone Joint Surg [Br] 2010; 92-B: 580–5
47 Lacava ZGM, Garcia VAP, Lacava LM. Biodistribution and biocompalibility investigation in magnctoliposome treated mice. Spectroscopy 2009; 18: 597–603
48 Dincer I, Tozkoparan O, German SV, et al. Efect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies. Journal of Magnetism and Magnetic Materials 2012; 324 (19): 2958–63
49 Bothun GD, Lelis A, Chen Y, et al. Multicomponent folate-targeted magnetoliposomes: design, characterization, and cellular uptake. Nanomedicine: Nanotechnology, Biology and Medicine 2011; 7 (6): 797–805
50 Voronin DV, Sindeeva OA, Kurochkin MA, et al. In vitro and in vivo visualization and trapping of fuorescent magnetic microcapsules in a bloodstream. ACS Applied Materials & Interfaces 2017; 9 (8); 6885–93.

Прикрепленный файлРазмер
2019_02_368-371.pdf256.97 кб

Голосов пока нет